File size: 5,402 Bytes
bb63470
 
 
 
9f7512d
bb63470
9f7512d
bb63470
 
 
 
9f7512d
 
 
 
 
 
 
 
bb63470
9f7512d
 
bb63470
9f7512d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb63470
9f7512d
 
 
 
 
bb63470
9f7512d
 
 
 
 
 
 
 
 
bb63470
9f7512d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import numpy as np
import librosa
from transformers import pipeline
import json

# Initialize AI models
emotion_analyzer = pipeline("audio-classification", model="MIT/ast-finetuned-speech-commands-v2")
speech_recognizer = pipeline("automatic-speech-recognition", 
                           model="kresnik/wav2vec2-large-xlsr-korean")

# Global state management
current_stage = "intro"
session_data = {}

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        # State management
        state = gr.State(value={"stage": "intro", "session_data": {}})
        
        # Header
        gr.Markdown("# 디지털 굿판")
        
        # Navigation tabs
        with gr.Tabs() as tabs:
            # Intro/세계관 Stage
            with gr.Tab("입장", id="intro"):
                gr.Markdown("""
                # 디지털 굿판에 오신 것을 환영합니다
                온천천의 디지털 치유 공간으로 들어가보세요.
                """)
                intro_next = gr.Button("여정 시작하기")
            
            # 청신 Stage (Sound Purification)
            with gr.Tab("청신", id="cleansing", visible=False):
                with gr.Row():
                    audio_player = gr.Audio(
                        value="path_to_default_sound.mp3",  # 기본 사운드 파일
                        type="filepath",
                        label="온천천의 소리"
                    )
                    location_info = gr.Textbox(
                        label="현재 위치",
                        value="온천장역",
                        interactive=False
                    )
                cleansing_next = gr.Button("다음 단계로")
            
            # 기원 Stage (Voice Analysis)
            with gr.Tab("기원", id="voice", visible=False):
                with gr.Row():
                    # Voice input component
                    voice_input = gr.Audio(
                        label="목소리로 전하기",
                        sources=["microphone", "upload"],
                        type="filepath"
                    )
                    
                    # Analysis results
                    with gr.Column():
                        emotion_output = gr.JSON(
                            label="감정 분석 결과",
                            visible=True
                        )
                        text_output = gr.Textbox(
                            label="음성 텍스트",
                            visible=True
                        )
                voice_next = gr.Button("다음 단계로")
            
            # 송신 Stage (Sharing)
            with gr.Tab("송신", id="sharing", visible=False):
                with gr.Row():
                    gr.Gallery(
                        label="생성된 이미지",
                        show_label=True,
                        elem_id="gallery"
                    )
                    gr.Markdown("## 공동체와 함께 나누기")
                complete_button = gr.Button("완료")

        # Floating navigation menu
        with gr.Row(visible=True) as float_menu:
            gr.Button("🏠", scale=1)
            gr.Button("🎵", scale=1)
            gr.Button("🎤", scale=1)
            gr.Button("🖼️", scale=1)

        # Voice analysis function
        def analyze_voice(audio_file, state):
            try:
                if audio_file is None:
                    return {"error": "No audio input provided"}, state
                
                # Load audio
                y, sr = librosa.load(audio_file)
                
                # Emotion analysis
                emotions = emotion_analyzer(y)
                primary_emotion = emotions[0]
                
                # Speech to text
                text_result = speech_recognizer(y)
                
                # Update state
                state["voice_analysis"] = {
                    "emotion": primary_emotion['label'],
                    "probability": float(primary_emotion['score']),
                    "text": text_result['text']
                }
                
                return {
                    "emotion": primary_emotion['label'],
                    "emotion_probability": f"{primary_emotion['score']:.2f}",
                    "transcribed_text": text_result['text'],
                    "status": "Analysis complete"
                }, state
            except Exception as e:
                return {"error": str(e), "status": "Error occurred"}, state

        # Event handlers
        voice_input.change(
            fn=analyze_voice,
            inputs=[voice_input, state],
            outputs=[emotion_output, state]
        )

        # Stage navigation
        intro_next.click(
            fn=lambda s: {"stage": "cleansing", **s},
            inputs=[state],
            outputs=[state],
        )
        
        cleansing_next.click(
            fn=lambda s: {"stage": "voice", **s},
            inputs=[state],
            outputs=[state],
        )
        
        voice_next.click(
            fn=lambda s: {"stage": "sharing", **s},
            inputs=[state],
            outputs=[state],
        )

    return app

# Launch the application
if __name__ == "__main__":
    app = create_interface()
    app.launch()