# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description:
modified from https://github.com/imClumsyPanda/langchain-ChatGLM/blob/master/webui.py
"""
import gradio as gr
import os
import shutil
from loguru import logger
from chatpdf import ChatPDF
import hashlib
from typing import List
pwd_path = os.path.abspath(os.path.dirname(__file__))
CONTENT_DIR = os.path.join(pwd_path, "content")
logger.info(f"CONTENT_DIR: {CONTENT_DIR}")
VECTOR_SEARCH_TOP_K = 3
MAX_INPUT_LEN = 2048
embedding_model_dict = {
"text2vec-large": "GanymedeNil/text2vec-large-chinese",
"text2vec-base": "shibing624/text2vec-base-chinese",
"sentence-transformers": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
}
# supported LLM models
llm_model_dict = {
# "chatglm-6b": "E:\\sdwebui\\image2text_prompt_generator\\models\\chatglm-6b",
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
"chatglm-6b": "THUDM/chatglm-6b",
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
"llama-7b": "decapoda-research/llama-7b-hf",
"llama-13b": "decapoda-research/llama-13b-hf",
"t5-lamini-flan-783M": "MBZUAI/LaMini-Flan-T5-783M",
}
llm_model_dict_list = list(llm_model_dict.keys())
embedding_model_dict_list = list(embedding_model_dict.keys())
model = None
def get_file_list():
if not os.path.exists("content"):
return []
return [f for f in os.listdir("content") if
f.endswith(".txt") or f.endswith(".pdf") or f.endswith(".docx") or f.endswith(".md")]
def upload_file(file, file_list):
if not os.path.exists(CONTENT_DIR):
os.mkdir(CONTENT_DIR)
filename = os.path.basename(file.name)
shutil.move(file.name, os.path.join(CONTENT_DIR, filename))
# file_list首位插入新上传的文件
file_list.insert(0, filename)
return gr.Dropdown.update(choices=file_list, value=filename), file_list
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
" + line
text = "".join(lines)
return text
def get_answer(
query,
index_path,
history,
topn: int = VECTOR_SEARCH_TOP_K,
max_input_size: int = 1024,
chat_mode: str = "pdf"
):
global model
if model is None:
return [None, "模型还未加载"], query
if index_path and chat_mode == "pdf":
if not model.sim_model.corpus_embeddings:
model.load_index(index_path)
response, empty_history, reference_results = model.query(query=query, topn=topn, max_input_size=max_input_size)
logger.debug(f"query: {query}, response with content: {response}")
for i in range(len(reference_results)):
r = reference_results[i]
response += f"\n{r.strip()}"
response = parse_text(response)
history = history + [[query, response]]
else:
# 未加载文件,仅返回生成模型结果
response, empty_history = model.chat(query, history)
response = parse_text(response)
history = history + [[query, response]]
logger.debug(f"query: {query}, response: {response}")
return history, ""
def update_status(history, status):
history = history + [[None, status]]
logger.info(status)
return history
def reinit_model(llm_model, embedding_model, history):
try:
global model
if model is not None:
del model
model = ChatPDF(
sim_model_name_or_path=embedding_model_dict.get(
embedding_model,
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
),
gen_model_type=llm_model.split('-')[0],
gen_model_name_or_path=llm_model_dict.get(llm_model, "THUDM/chatglm-6b-int4"),
lora_model_name_or_path=None,
)
model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮"""
except Exception as e:
model = None
logger.error(e)
model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮"""
return history + [[None, model_status]]
def get_file_hash(fpath):
return hashlib.md5(open(fpath, 'rb').read()).hexdigest()
def get_vector_store(filepath, history, embedding_model):
logger.info(filepath, history)
index_path = None
file_status = ''
if model is not None:
local_file_path = os.path.join(CONTENT_DIR, filepath)
local_file_hash = get_file_hash(local_file_path)
index_file_name = f"{filepath}.{embedding_model}.{local_file_hash}.index.json"
local_index_path = os.path.join(CONTENT_DIR, index_file_name)
if os.path.exists(local_index_path):
model.load_index(local_index_path)
index_path = local_index_path
file_status = "文件已成功加载,请开始提问"
elif os.path.exists(local_file_path):
model.load_pdf_file(local_file_path)
model.save_index(local_index_path)
index_path = local_index_path
if index_path:
file_status = "文件索引并成功加载,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
else:
file_status = "模型未完成加载,请先在加载模型后再导入文件"
return index_path, history + [[None, file_status]]
def reset_chat(chatbot, state):
return None, None
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}"""
webui_title = """
# 🎉ChatPDF WebUI🎉
Link in: [https://github.com/zhongpei/ChatPDF](https://github.com/zhongpei/ChatPDF) Test for MBZUAI/LaMini-Flan-T5-783M
"""
init_message = """欢迎使用 ChatPDF Web UI,可以直接提问或上传文件后提问 """
with gr.Blocks(css=block_css) as demo:
index_path, file_status, model_status = gr.State(""), gr.State(""), gr.State("")
file_list = gr.State(get_file_list())
gr.Markdown(webui_title)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot([[None, init_message], [None, None]],
elem_id="chat-box",
show_label=False).style(height=700)
query = gr.Textbox(show_label=False,
placeholder="请输入提问内容,按回车进行提交",
).style(container=False)
clear_btn = gr.Button('🔄Clear!', elem_id='clear').style(full_width=True)
with gr.Column(scale=1):
llm_model = gr.Radio(llm_model_dict_list,
label="LLM 模型",
value=list(llm_model_dict.keys())[0],
interactive=True)
embedding_model = gr.Radio(embedding_model_dict_list,
label="Embedding 模型",
value=embedding_model_dict_list[0],
interactive=True)
load_model_button = gr.Button("重新加载模型" if model is not None else "加载模型")
with gr.Row():
chat_mode = gr.Radio(choices=["chat", "pdf"], value="pdf", label="聊天模式")
with gr.Row():
topn = gr.Slider(1, 100, 20, step=1, label="最大搜索数量")
max_input_size = gr.Slider(512, 4096, MAX_INPUT_LEN, step=10, label="摘要最大长度")
with gr.Tab("select"):
with gr.Row():
selectFile = gr.Dropdown(
file_list.value,
label="content file",
interactive=True,
value=file_list.value[0] if len(file_list.value) > 0 else None
)
# get_file_list_btn = gr.Button('🔄').style(width=10)
with gr.Tab("upload"):
file = gr.File(
label="content file",
file_types=['.txt', '.md', '.docx', '.pdf']
)
load_file_button = gr.Button("加载文件")
load_model_button.click(
reinit_model,
show_progress=True,
inputs=[llm_model, embedding_model, chatbot],
outputs=chatbot
)
# 将上传的文件保存到content文件夹下,并更新下拉框
file.upload(
upload_file,
inputs=[file, file_list],
outputs=[selectFile, file_list]
)
load_file_button.click(
get_vector_store,
show_progress=True,
inputs=[selectFile, chatbot, embedding_model],
outputs=[index_path, chatbot],
)
query.submit(
get_answer,
[query, index_path, chatbot, topn, max_input_size, chat_mode],
[chatbot, query],
)
clear_btn.click(reset_chat, [chatbot, query], [chatbot, query])
demo.queue(concurrency_count=3).launch(
server_name='0.0.0.0', share=False, inbrowser=False
)