TrueFace / app.py
haijian06's picture
Update app.py
612a8c2 verified
raw
history blame
8.75 kB
import os
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
import cv2
from scipy.fftpack import fft2, fftshift
from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
import timm
import gradio as gr
# [把你原来代码中的AttentionBlock和AdvancedFaceDetectionModel类定义放在这里]
class AttentionBlock(nn.Module):
def __init__(self, in_features):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Linear(in_features, max(in_features // 8, 1)),
nn.ReLU(),
nn.Linear(max(in_features // 8, 1), in_features),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class AdvancedFaceDetectionModel(nn.Module):
def __init__(self, spectrum_length=181, lbp_n_bins=10):
super(AdvancedFaceDetectionModel, self).__init__()
self.efficientnet = timm.create_model('tf_efficientnetv2_b2', pretrained=True, num_classes=0)
for param in self.efficientnet.conv_stem.parameters():
param.requires_grad = False
for param in self.efficientnet.bn1.parameters():
param.requires_grad = False
self.glcm_fc = nn.Sequential(
nn.Linear(20, 64),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Dropout(0.5)
)
self.spectrum_conv = nn.Sequential(
nn.Conv1d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.AdaptiveAvgPool1d(1)
)
self.edge_conv = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.AdaptiveAvgPool2d((8, 8))
)
self.lbp_fc = nn.Sequential(
nn.Linear(lbp_n_bins, 64),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Dropout(0.5)
)
image_feature_size = self.efficientnet.num_features
self.image_attention = AttentionBlock(image_feature_size)
self.glcm_attention = AttentionBlock(64)
self.spectrum_attention = AttentionBlock(64)
self.edge_attention = AttentionBlock(32 * 8 * 8)
self.lbp_attention = AttentionBlock(64)
total_features = image_feature_size + 64 + 64 + (32 * 8 * 8) + 64
self.fusion = nn.Sequential(
nn.Linear(total_features, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1)
)
def forward(self, image, glcm_features, spectrum_features, edge_features, lbp_features):
image_features = self.efficientnet(image)
image_features = self.image_attention(image_features)
glcm_features = self.glcm_fc(glcm_features)
glcm_features = self.glcm_attention(glcm_features)
spectrum_features = self.spectrum_conv(spectrum_features.unsqueeze(1))
spectrum_features = spectrum_features.squeeze(2)
spectrum_features = self.spectrum_attention(spectrum_features)
edge_features = self.edge_conv(edge_features.unsqueeze(1))
edge_features = edge_features.view(edge_features.size(0), -1)
edge_features = self.edge_attention(edge_features)
lbp_features = self.lbp_fc(lbp_features)
lbp_features = self.lbp_attention(lbp_features)
combined_features = torch.cat(
(image_features, glcm_features, spectrum_features, edge_features, lbp_features), dim=1
)
output = self.fusion(combined_features)
return output.squeeze(1)
# 特征提取函数
def extract_glcm_features(image):
image_uint8 = (image * 255).astype(np.uint8)
image_uint8 = image_uint8 // 4
glcm = graycomatrix(
image_uint8,
distances=[1],
angles=[0, np.pi / 4, np.pi / 2, 3 * np.pi / 4],
levels=64,
symmetric=True,
normed=True
)
contrast = graycoprops(glcm, 'contrast').flatten()
dissimilarity = graycoprops(glcm, 'dissimilarity').flatten()
homogeneity = graycoprops(glcm, 'homogeneity').flatten()
energy = graycoprops(glcm, 'energy').flatten()
correlation = graycoprops(glcm, 'correlation').flatten()
features = np.hstack([contrast, dissimilarity, homogeneity, energy, correlation])
return features.astype(np.float32)
def analyze_spectrum(image, target_spectrum_length=181):
f = fft2(image)
fshift = fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1e-8)
center = np.array(magnitude_spectrum.shape) // 2
y, x = np.indices(magnitude_spectrum.shape)
r = np.sqrt((x - center[1])**2 + (y - center[0])**2).astype(int)
radial_mean = np.bincount(r.ravel(), magnitude_spectrum.ravel()) / np.bincount(r.ravel())
if len(radial_mean) < target_spectrum_length:
radial_mean = np.pad(radial_mean, (0, target_spectrum_length - len(radial_mean)), 'constant')
else:
radial_mean = radial_mean[:target_spectrum_length]
return radial_mean.astype(np.float32)
def extract_edge_features(image):
image_uint8 = (image * 255).astype(np.uint8)
edges = cv2.Canny(image_uint8, 100, 200)
edges_resized = cv2.resize(edges, (64, 64), interpolation=cv2.INTER_AREA)
return edges_resized.astype(np.float32) / 255.0
def extract_lbp_features(image):
radius = 1
n_points = 8 * radius
METHOD = 'uniform'
lbp = local_binary_pattern(image, n_points, radius, METHOD)
n_bins = n_points + 2
hist, _ = np.histogram(lbp.ravel(), bins=n_bins, range=(0, n_bins), density=True)
return hist.astype(np.float32)
# 加载模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AdvancedFaceDetectionModel(spectrum_length=181, lbp_n_bins=10).to(device)
model.load_state_dict(torch.load('best_model.pth', map_location=device))
model.eval()
# 图像预处理转换
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def predict_image(image):
"""
Process uploaded image and return prediction result
"""
if image is None:
return "Please upload an image"
# Convert image format
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Apply transformations
image_tensor = transform(image).unsqueeze(0)
# Prepare image for feature extraction
np_image = image_tensor.cpu().numpy().squeeze(0).transpose(1, 2, 0)
np_image = np.clip(np_image, 0, 1)
# Convert to grayscale
gray_image = cv2.cvtColor((np_image * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
gray_image = gray_image.astype(np.float32) / 255.0
# Extract features
glcm_features = extract_glcm_features(gray_image)
spectrum_features = analyze_spectrum(gray_image)
edge_features = extract_edge_features(gray_image)
lbp_features = extract_lbp_features(gray_image)
# Convert to tensors and move to device
with torch.no_grad():
image_tensor = image_tensor.to(device)
glcm_features = torch.from_numpy(glcm_features).unsqueeze(0).to(device)
spectrum_features = torch.from_numpy(spectrum_features).unsqueeze(0).to(device)
edge_features = torch.from_numpy(edge_features).unsqueeze(0).to(device)
lbp_features = torch.from_numpy(lbp_features).unsqueeze(0).to(device)
# Model prediction
outputs = model(image_tensor, glcm_features, spectrum_features, edge_features, lbp_features)
prediction = torch.sigmoid(outputs).item()
# Return prediction result (corrected logic)
if prediction < 0.5: # Changed from > to <
return "Real Face"
else:
return "AI-Generated Face"
# Create Gradio interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"),
outputs=gr.Text(label="Prediction Result"),
title="Face Authentication System",
description="Upload a face image to determine if it's a real face or an AI-generated face.",
examples=[
# Add example image paths here
],
article="""
This system uses advanced deep learning techniques to detect whether a face image is real or AI-generated.
The model analyzes various image features including texture patterns, frequency spectrum, and local binary patterns
to make its determination.
"""
)
# Launch the application
iface.launch()