Update app.py
Browse files
app.py
CHANGED
@@ -10,68 +10,7 @@ from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
|
|
10 |
import timm
|
11 |
import gradio as gr
|
12 |
|
13 |
-
#
|
14 |
-
def extract_glcm_features(image):
|
15 |
-
image_uint8 = (image * 255).astype(np.uint8)
|
16 |
-
image_uint8 = image_uint8 // 4
|
17 |
-
|
18 |
-
glcm = graycomatrix(
|
19 |
-
image_uint8,
|
20 |
-
distances=[1],
|
21 |
-
angles=[0, np.pi / 4, np.pi / 2, 3 * np.pi / 4],
|
22 |
-
levels=64,
|
23 |
-
symmetric=True,
|
24 |
-
normed=True
|
25 |
-
)
|
26 |
-
|
27 |
-
contrast = graycoprops(glcm, 'contrast').flatten()
|
28 |
-
dissimilarity = graycoprops(glcm, 'dissimilarity').flatten()
|
29 |
-
homogeneity = graycoprops(glcm, 'homogeneity').flatten()
|
30 |
-
energy = graycoprops(glcm, 'energy').flatten()
|
31 |
-
correlation = graycoprops(glcm, 'correlation').flatten()
|
32 |
-
|
33 |
-
features = np.hstack([contrast, dissimilarity, homogeneity, energy, correlation])
|
34 |
-
return features.astype(np.float32)
|
35 |
-
|
36 |
-
# Spectrum analysis
|
37 |
-
def analyze_spectrum(image, target_spectrum_length=181):
|
38 |
-
f = fft2(image)
|
39 |
-
fshift = fftshift(f)
|
40 |
-
magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1e-8)
|
41 |
-
|
42 |
-
center = np.array(magnitude_spectrum.shape) // 2
|
43 |
-
y, x = np.indices(magnitude_spectrum.shape)
|
44 |
-
r = np.sqrt((x - center[1])**2 + (y - center[0])**2).astype(int)
|
45 |
-
|
46 |
-
radial_mean = np.bincount(r.ravel(), magnitude_spectrum.ravel()) / np.bincount(r.ravel())
|
47 |
-
|
48 |
-
if len(radial_mean) < target_spectrum_length:
|
49 |
-
radial_mean = np.pad(radial_mean, (0, target_spectrum_length - len(radial_mean)), 'constant')
|
50 |
-
else:
|
51 |
-
radial_mean = radial_mean[:target_spectrum_length]
|
52 |
-
|
53 |
-
return radial_mean.astype(np.float32)
|
54 |
-
|
55 |
-
# Edge feature extraction
|
56 |
-
def extract_edge_features(image):
|
57 |
-
image_uint8 = (image * 255).astype(np.uint8)
|
58 |
-
edges = cv2.Canny(image_uint8, 100, 200)
|
59 |
-
edges_resized = cv2.resize(edges, (64, 64), interpolation=cv2.INTER_AREA)
|
60 |
-
return edges_resized.astype(np.float32) / 255.0
|
61 |
-
|
62 |
-
# LBP feature extraction
|
63 |
-
def extract_lbp_features(image):
|
64 |
-
radius = 1
|
65 |
-
n_points = 8 * radius
|
66 |
-
METHOD = 'uniform'
|
67 |
-
|
68 |
-
lbp = local_binary_pattern(image, n_points, radius, METHOD)
|
69 |
-
n_bins = n_points + 2
|
70 |
-
hist, _ = np.histogram(lbp.ravel(), bins=n_bins, range=(0, n_bins), density=True)
|
71 |
-
|
72 |
-
return hist.astype(np.float32)
|
73 |
-
|
74 |
-
# Model architecture
|
75 |
class AttentionBlock(nn.Module):
|
76 |
def __init__(self, in_features):
|
77 |
super(AttentionBlock, self).__init__()
|
@@ -90,7 +29,7 @@ class AdvancedFaceDetectionModel(nn.Module):
|
|
90 |
def __init__(self, spectrum_length=181, lbp_n_bins=10):
|
91 |
super(AdvancedFaceDetectionModel, self).__init__()
|
92 |
|
93 |
-
self.efficientnet = timm.create_model('tf_efficientnetv2_b2', pretrained=
|
94 |
for param in self.efficientnet.conv_stem.parameters():
|
95 |
param.requires_grad = False
|
96 |
for param in self.efficientnet.bn1.parameters():
|
@@ -169,12 +108,72 @@ class AdvancedFaceDetectionModel(nn.Module):
|
|
169 |
output = self.fusion(combined_features)
|
170 |
return output.squeeze(1)
|
171 |
|
172 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
174 |
model = AdvancedFaceDetectionModel(spectrum_length=181, lbp_n_bins=10).to(device)
|
175 |
model.load_state_dict(torch.load('best_model.pth', map_location=device))
|
176 |
model.eval()
|
177 |
|
|
|
178 |
transform = transforms.Compose([
|
179 |
transforms.Resize((256, 256)),
|
180 |
transforms.ToTensor(),
|
@@ -183,64 +182,61 @@ transform = transforms.Compose([
|
|
183 |
|
184 |
def predict_image(image):
|
185 |
"""
|
186 |
-
|
187 |
"""
|
188 |
-
|
189 |
-
|
190 |
-
image = Image.fromarray(image)
|
191 |
|
192 |
-
#
|
193 |
-
if image.
|
194 |
-
image =
|
195 |
|
196 |
-
#
|
197 |
image_tensor = transform(image).unsqueeze(0)
|
198 |
-
|
199 |
-
#
|
200 |
np_image = image_tensor.cpu().numpy().squeeze(0).transpose(1, 2, 0)
|
201 |
np_image = np.clip(np_image, 0, 1)
|
202 |
-
|
203 |
-
#
|
204 |
gray_image = cv2.cvtColor((np_image * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
|
205 |
gray_image = gray_image.astype(np.float32) / 255.0
|
206 |
-
|
207 |
-
#
|
208 |
glcm_features = extract_glcm_features(gray_image)
|
209 |
spectrum_features = analyze_spectrum(gray_image)
|
210 |
edge_features = extract_edge_features(gray_image)
|
211 |
lbp_features = extract_lbp_features(gray_image)
|
212 |
-
|
213 |
-
#
|
214 |
with torch.no_grad():
|
215 |
image_tensor = image_tensor.to(device)
|
216 |
glcm_features = torch.from_numpy(glcm_features).unsqueeze(0).to(device)
|
217 |
spectrum_features = torch.from_numpy(spectrum_features).unsqueeze(0).to(device)
|
218 |
edge_features = torch.from_numpy(edge_features).unsqueeze(0).to(device)
|
219 |
lbp_features = torch.from_numpy(lbp_features).unsqueeze(0).to(device)
|
220 |
-
|
221 |
-
#
|
222 |
outputs = model(image_tensor, glcm_features, spectrum_features, edge_features, lbp_features)
|
223 |
-
|
224 |
-
prediction = "Real Face" if probability > 0.5 else "Fake Face"
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
#
|
229 |
iface = gr.Interface(
|
230 |
fn=predict_image,
|
231 |
inputs=gr.Image(type="pil"),
|
232 |
-
outputs=
|
233 |
-
|
234 |
-
|
235 |
-
],
|
236 |
-
title="Face Authentication System",
|
237 |
-
description="Upload an image to determine if it contains a real or fake face.",
|
238 |
examples=[
|
239 |
-
|
240 |
-
|
241 |
-
] if os.path.exists("example1.jpg") else None,
|
242 |
)
|
243 |
|
244 |
-
#
|
245 |
-
|
246 |
-
iface.launch()
|
|
|
10 |
import timm
|
11 |
import gradio as gr
|
12 |
|
13 |
+
# [把你原来代码中的AttentionBlock和AdvancedFaceDetectionModel类定义放在这里]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class AttentionBlock(nn.Module):
|
15 |
def __init__(self, in_features):
|
16 |
super(AttentionBlock, self).__init__()
|
|
|
29 |
def __init__(self, spectrum_length=181, lbp_n_bins=10):
|
30 |
super(AdvancedFaceDetectionModel, self).__init__()
|
31 |
|
32 |
+
self.efficientnet = timm.create_model('tf_efficientnetv2_b2', pretrained=True, num_classes=0)
|
33 |
for param in self.efficientnet.conv_stem.parameters():
|
34 |
param.requires_grad = False
|
35 |
for param in self.efficientnet.bn1.parameters():
|
|
|
108 |
output = self.fusion(combined_features)
|
109 |
return output.squeeze(1)
|
110 |
|
111 |
+
# 特征提取函数
|
112 |
+
def extract_glcm_features(image):
|
113 |
+
image_uint8 = (image * 255).astype(np.uint8)
|
114 |
+
image_uint8 = image_uint8 // 4
|
115 |
+
|
116 |
+
glcm = graycomatrix(
|
117 |
+
image_uint8,
|
118 |
+
distances=[1],
|
119 |
+
angles=[0, np.pi / 4, np.pi / 2, 3 * np.pi / 4],
|
120 |
+
levels=64,
|
121 |
+
symmetric=True,
|
122 |
+
normed=True
|
123 |
+
)
|
124 |
+
|
125 |
+
contrast = graycoprops(glcm, 'contrast').flatten()
|
126 |
+
dissimilarity = graycoprops(glcm, 'dissimilarity').flatten()
|
127 |
+
homogeneity = graycoprops(glcm, 'homogeneity').flatten()
|
128 |
+
energy = graycoprops(glcm, 'energy').flatten()
|
129 |
+
correlation = graycoprops(glcm, 'correlation').flatten()
|
130 |
+
|
131 |
+
features = np.hstack([contrast, dissimilarity, homogeneity, energy, correlation])
|
132 |
+
return features.astype(np.float32)
|
133 |
+
|
134 |
+
def analyze_spectrum(image, target_spectrum_length=181):
|
135 |
+
f = fft2(image)
|
136 |
+
fshift = fftshift(f)
|
137 |
+
magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1e-8)
|
138 |
+
|
139 |
+
center = np.array(magnitude_spectrum.shape) // 2
|
140 |
+
y, x = np.indices(magnitude_spectrum.shape)
|
141 |
+
r = np.sqrt((x - center[1])**2 + (y - center[0])**2).astype(int)
|
142 |
+
|
143 |
+
radial_mean = np.bincount(r.ravel(), magnitude_spectrum.ravel()) / np.bincount(r.ravel())
|
144 |
+
|
145 |
+
if len(radial_mean) < target_spectrum_length:
|
146 |
+
radial_mean = np.pad(radial_mean, (0, target_spectrum_length - len(radial_mean)), 'constant')
|
147 |
+
else:
|
148 |
+
radial_mean = radial_mean[:target_spectrum_length]
|
149 |
+
|
150 |
+
return radial_mean.astype(np.float32)
|
151 |
+
|
152 |
+
def extract_edge_features(image):
|
153 |
+
image_uint8 = (image * 255).astype(np.uint8)
|
154 |
+
edges = cv2.Canny(image_uint8, 100, 200)
|
155 |
+
edges_resized = cv2.resize(edges, (64, 64), interpolation=cv2.INTER_AREA)
|
156 |
+
return edges_resized.astype(np.float32) / 255.0
|
157 |
+
|
158 |
+
def extract_lbp_features(image):
|
159 |
+
radius = 1
|
160 |
+
n_points = 8 * radius
|
161 |
+
METHOD = 'uniform'
|
162 |
+
|
163 |
+
lbp = local_binary_pattern(image, n_points, radius, METHOD)
|
164 |
+
|
165 |
+
n_bins = n_points + 2
|
166 |
+
hist, _ = np.histogram(lbp.ravel(), bins=n_bins, range=(0, n_bins), density=True)
|
167 |
+
|
168 |
+
return hist.astype(np.float32)
|
169 |
+
|
170 |
+
# 加载模型
|
171 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
172 |
model = AdvancedFaceDetectionModel(spectrum_length=181, lbp_n_bins=10).to(device)
|
173 |
model.load_state_dict(torch.load('best_model.pth', map_location=device))
|
174 |
model.eval()
|
175 |
|
176 |
+
# 图像预处理转换
|
177 |
transform = transforms.Compose([
|
178 |
transforms.Resize((256, 256)),
|
179 |
transforms.ToTensor(),
|
|
|
182 |
|
183 |
def predict_image(image):
|
184 |
"""
|
185 |
+
处理上传的图片并返回预测结果
|
186 |
"""
|
187 |
+
if image is None:
|
188 |
+
return "请上传图片"
|
|
|
189 |
|
190 |
+
# 转换图片格式
|
191 |
+
if isinstance(image, np.ndarray):
|
192 |
+
image = Image.fromarray(image)
|
193 |
|
194 |
+
# 应用转换
|
195 |
image_tensor = transform(image).unsqueeze(0)
|
196 |
+
|
197 |
+
# 准备特征提取用的图像
|
198 |
np_image = image_tensor.cpu().numpy().squeeze(0).transpose(1, 2, 0)
|
199 |
np_image = np.clip(np_image, 0, 1)
|
200 |
+
|
201 |
+
# 转换为灰度图
|
202 |
gray_image = cv2.cvtColor((np_image * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
|
203 |
gray_image = gray_image.astype(np.float32) / 255.0
|
204 |
+
|
205 |
+
# 提取特征
|
206 |
glcm_features = extract_glcm_features(gray_image)
|
207 |
spectrum_features = analyze_spectrum(gray_image)
|
208 |
edge_features = extract_edge_features(gray_image)
|
209 |
lbp_features = extract_lbp_features(gray_image)
|
210 |
+
|
211 |
+
# 转换为张量并移到设备
|
212 |
with torch.no_grad():
|
213 |
image_tensor = image_tensor.to(device)
|
214 |
glcm_features = torch.from_numpy(glcm_features).unsqueeze(0).to(device)
|
215 |
spectrum_features = torch.from_numpy(spectrum_features).unsqueeze(0).to(device)
|
216 |
edge_features = torch.from_numpy(edge_features).unsqueeze(0).to(device)
|
217 |
lbp_features = torch.from_numpy(lbp_features).unsqueeze(0).to(device)
|
218 |
+
|
219 |
+
# 模型预测
|
220 |
outputs = model(image_tensor, glcm_features, spectrum_features, edge_features, lbp_features)
|
221 |
+
prediction = torch.sigmoid(outputs).item()
|
|
|
222 |
|
223 |
+
# 返回预测结果
|
224 |
+
if prediction > 0.5:
|
225 |
+
return "真实人脸图片"
|
226 |
+
else:
|
227 |
+
return "虚假人脸图片"
|
228 |
|
229 |
+
# 创建Gradio界面
|
230 |
iface = gr.Interface(
|
231 |
fn=predict_image,
|
232 |
inputs=gr.Image(type="pil"),
|
233 |
+
outputs=gr.Text(label="预测结果"),
|
234 |
+
title="人脸真伪检测",
|
235 |
+
description="上传一张人脸图片,模型将判断是真实人脸还是虚假人脸。",
|
|
|
|
|
|
|
236 |
examples=[
|
237 |
+
# 这里可以添加示例图片路径
|
238 |
+
]
|
|
|
239 |
)
|
240 |
|
241 |
+
# 启动应用
|
242 |
+
iface.launch()
|
|