Spaces:
Sleeping
Sleeping
File size: 18,449 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import random
from dataclasses import dataclass
from enum import Enum
from random import choices
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy
from sdlm.data.preprocessors import (
gpt_span_mask_batch,
insert_extra_paddings,
t5_random_spans_mask_batch,
uncond_span_mask_batch,
)
class Objective(Enum):
# Prefix language modeling like GPT style pretraining.
prefix = 1
# T5 objective with a range of 2 to 5 tokens as the span length, which masks about 15% of input tokens.
t5 = 2
# Aggressive denoising where approximately 50% of the input sequence is masked.
aggressive_t5 = 3
# Unconditional generation case.
unconditional = 4
# TODO: automize this one.
# TODO: these are for sequence length of 100, adapt for 200.
OBJECTIVE_SETTINGS = {
Objective.t5: [
{"mask_ratio": 0.15, "mean_mask_span_length": 8},
{"mask_ratio": 0.15, "mean_mask_span_length": 3},
],
Objective.aggressive_t5: [
{"mask_ratio": 0.5, "mean_mask_span_length": 8},
{"mask_ratio": 0.5, "mean_mask_span_length": 3},
{"mask_ratio": 0.5, "mean_mask_span_length": 48},
],
}
@dataclass
class SpanInfillingDataCollator:
"""
Data collator that will dynamically pad the inputs received.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
def __init__(
self,
mode,
data_args,
tokenizer: PreTrainedTokenizerBase,
padding: Union[bool, str, PaddingStrategy] = True,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: str = "pt",
seed: int = 42,
eval_context_size: int = None,
):
self.tokenizer = tokenizer
self.padding = padding
self.max_length = max_length
self.pad_to_multiple_of = pad_to_multiple_of
self.return_tensors = return_tensors
self.conditional_generation = data_args.conditional_generation
self.extra_padding_ratio = data_args.extra_padding_ratio
self.ul2_max_mask_ratio = data_args.ul2_max_mask_ratio
self.rng = np.random.default_rng(seed)
self.eval_context_size = eval_context_size
self.mode = mode
if self.conditional_generation == "ul2_with_unconditional" and mode == "train":
self.mask_generator = {}
self.mask_generator[
Objective.t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[
Objective.aggressive_t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
self.mask_generator[
Objective.unconditional
] = lambda batch: uncond_span_mask_batch(batch)
elif self.conditional_generation == "span_infilling":
self.mask_generator = lambda batch: t5_random_spans_mask_batch(
batch, data_args.mask_ratio, data_args.mean_mask_span_length, self.rng
)
elif self.conditional_generation == "prefix_lm":
self.mask_generator = lambda batch: gpt_span_mask_batch(
batch,
use_half_length_as_prefix_size=(mode == "eval"),
eval_context_size=eval_context_size,
)
elif self.conditional_generation == "prefix_with_unconditional":
self.mask_generator = {}
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
self.mask_generator[
Objective.unconditional
] = lambda batch: uncond_span_mask_batch(batch)
elif self.conditional_generation == "ul2" and mode == "train":
self.mask_generator = {}
self.mask_generator[
Objective.t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[
Objective.aggressive_t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
elif self.conditional_generation == "ul2_variable" and mode == "train":
self.mask_generator = {}
self.mask_generator[
Objective.t5
] = lambda batch, mask_ratio, mean_mask_span_length: t5_random_spans_mask_batch(
batch,
mask_ratio=mask_ratio,
mean_mask_span_length=mean_mask_span_length,
rng=self.rng,
)
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
if self.extra_padding_ratio:
# Inserting random tokens uniformly, we do not modify start and end of
# sequence tokens.
for i in range(len(features)):
features[i]["input_ids"] = insert_extra_paddings(
self.rng,
features[i]["input_ids"],
self.tokenizer.pad_token_id,
self.extra_padding_ratio,
)
masks = {}
if self.conditional_generation in ["span_infilling", "prefix_lm"]:
masks = {"span_mask": self.mask_generator(features)}
elif (
self.conditional_generation == "ul2_with_unconditional"
and self.mode == "train"
):
objectives = [
Objective.unconditional,
Objective.t5,
Objective.prefix,
Objective.aggressive_t5,
]
weights = [0.25, 0.25, 0.25, 0.25]
objective = choices(objectives, weights)[0]
if objective in [Objective.t5, Objective.aggressive_t5]:
setting = choices(OBJECTIVE_SETTINGS[objective])[0]
masks = {"span_mask": self.mask_generator[objective](features, setting)}
else:
masks = {"span_mask": self.mask_generator[objective](features)}
elif (
self.conditional_generation == "prefix_with_unconditional"
and self.mode == "train"
):
objectives = [
Objective.unconditional,
Objective.prefix,
]
weights = [0.5, 0.5]
objective = choices(objectives, weights)[0]
masks = {"span_mask": self.mask_generator[objective](features)}
elif self.conditional_generation == "ul2" and self.mode == "train":
objectives = [Objective.t5, Objective.prefix, Objective.aggressive_t5]
weights = [0.25, 0.25, 0.25]
objective = choices(objectives, weights)[0]
if objective in [Objective.t5, Objective.aggressive_t5]:
setting = choices(OBJECTIVE_SETTINGS[objective])[0]
masks = {"span_mask": self.mask_generator[objective](features, setting)}
else:
masks = {"span_mask": self.mask_generator[objective](features)}
elif self.conditional_generation == "ul2_variable" and self.mode == "train":
objectives = [Objective.t5, Objective.prefix]
weights = [0.5, 0.5]
objective = choices(objectives, weights)[0]
if objective == objective.t5:
# Here we assume the length is the same for all data in a batch.
length = len(features[0]["input_ids"])
min_ratio = 1.0 / length
mask_ratio = random.uniform(min_ratio, self.ul2_max_mask_ratio)
mean_mask_span_length = int(random.uniform(1, mask_ratio * length))
masks = {
"span_mask": self.mask_generator[objective](
features, mask_ratio, mean_mask_span_length
)
}
else:
masks = {"span_mask": self.mask_generator[objective](features)}
elif self.mode == "eval" and self.conditional_generation in [
"ul2",
"ul2_with_unconditional",
"ul2_variable",
"prefix_with_unconditional",
]:
masks = {
"span_mask": gpt_span_mask_batch(
features,
use_half_length_as_prefix_size=True,
eval_context_size=self.eval_context_size,
)
}
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
return_attention_mask=False,
)
# we just need input_ids
batch = {"input_ids": batch["input_ids"]}
return {**batch, **masks}
@dataclass
class DataCollatorForSeq2Seq:
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
input_ids = [feature["input_ids"] for feature in features]
labels = [feature["labels"] for feature in features]
input_target = [input + target for input, target in zip(input_ids, labels)]
features = self.tokenizer.pad(
{"input_ids": input_target},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)
batch_length = features["input_ids"].shape[1]
masks = [
len(input) * [False] + (batch_length - len(input)) * [True]
for input in input_ids
]
features["span_mask"] = torch.tensor(masks)
return features
@dataclass
class DataCollatorForCausalLMSeq2Seq:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
use_sep: Optional[bool] = False
# \nsummary:
# LLAMA_SEP: Tuple[int] = (13, 7727, 29901)
# MISTRAL_SEP: Tuple[int] = (13, 3499, 28747)
# <sep>
LLAMA_SEP: Tuple[int] = (529, 19570, 29958)
MISTRAL_SEP: Tuple[int] = (523, 21571, 28767)
def __call__(self, features):
if "attention_mask" in features:
features.pop("attention_mask")
# remove eos from input_ids
input_ids = [feature["input_ids"][:-1] for feature in features]
# remove sos from labels
labels = [feature["labels"][1:] for feature in features]
SEP = []
if self.use_sep:
# guard incomplete code path
# TODO: add use_sep to arguments
assert False
tokenizer_name = self.tokenizer.name_or_path.lower()
if "mistral" in tokenizer_name:
SEP = list(self.MISTRAL_SEP)
elif "llama" in tokenizer_name:
SEP = list(self.LLAMA_SEP)
else:
raise ValueError("Unrecognized tokenizer.name_or_path")
input_target = [
input + SEP + target for input, target in zip(input_ids, labels)
]
else:
input_target = [input + target for input, target in zip(input_ids, labels)]
features = self.tokenizer.pad(
{"input_ids": input_target},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=True,
)
batch_length = features["input_ids"].shape[1]
masks = []
pad_lengths = []
context_lengths = []
for input, label in zip(input_ids, labels):
context_length = len(input)
if self.use_sep:
context_length += len(SEP)
label_length = len(label)
pad_length = batch_length - context_length - label_length
if self.tokenizer.padding_side == "right":
raise NotImplementedError
mask = (context_length + pad_length) * [False] + label_length * [True]
masks.append(mask)
pad_lengths.append(pad_length)
context_lengths.append(context_length)
features["labels"] = torch.where(
torch.tensor(masks), features["input_ids"], -100
)
features["pad_lengths"] = torch.tensor(pad_lengths)
features["context_lengths"] = torch.tensor(context_lengths)
return features
# custom collator for the multi-turn input format.
@dataclass
class DataCollatorForMultiTurnSeq2Seq:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
input_ids = [feature["input_ids"] for feature in features]
labels = [feature["labels"] for feature in features]
features = self.tokenizer.pad(
{"input_ids": input_ids},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)
# pad labels out for easy mask
label_features = self.tokenizer.pad(
{"input_ids": labels},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)["input_ids"]
# true wherever we have an actual label
features["span_mask"] = torch.where(label_features == -100, False, True)
return features
# custom collator for the multi-turn input format with causal
@dataclass
class DataCollatorForCausalMultiTurnSeq2Seq:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
input_ids = [feature["input_ids"] for feature in features]
labels = [feature["labels"] for feature in features]
features = self.tokenizer.pad(
{"input_ids": input_ids},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)
# reinstate attention mask
features["attention_mask"] = (
features["input_ids"] != self.tokenizer.pad_token_id
)
# pad labels out for easy mask
label_features = self.tokenizer.pad(
{"input_ids": labels},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)["input_ids"]
features["labels"] = label_features
return features
|