File size: 5,081 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
""" Official evaluation script for v1.1 of the SQuAD dataset.
copied from https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py
"""
from __future__ import print_function
from collections import Counter
import string
import re
import argparse
import json
import sys


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def f1_score(prediction, ground_truth):
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def precision_score(prediction, ground_truth):
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    return precision


def recall_score(prediction, ground_truth):
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    recall = 1.0 * num_same / len(ground_truth_tokens)
    return recall


def exact_match_score(prediction, ground_truth):
    return normalize_answer(prediction) == normalize_answer(ground_truth)


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def evaluate(references, predictions):
    predictions = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
    dataset = [
        {
            "paragraphs": [
                {
                    "qas": [
                        {
                            "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
                            "id": ref["id"],
                        }
                        for ref in references
                    ]
                }
            ]
        }
    ]
    f1 = exact_match = precision = recall = total = 0
    for article in dataset:
        for paragraph in article["paragraphs"]:
            for qa in paragraph["qas"]:
                total += 1
                if qa["id"] not in predictions:
                    message = "Unanswered question " + qa["id"] + " will receive score 0."
                    print(message, file=sys.stderr)
                    continue
                ground_truths = list(map(lambda x: x["text"], qa["answers"]))
                prediction = predictions[qa["id"]]
                exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
                f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
                precision += metric_max_over_ground_truths(precision_score, prediction, ground_truths)
                recall += metric_max_over_ground_truths(recall_score, prediction, ground_truths)

    exact_match = 100.0 * exact_match / total
    f1 = 100.0 * f1 / total
    precision = 100.0 * precision / total
    recall = 100.0 * recall / total

    return {"exact_match": exact_match, "f1": f1, "precision": precision, "recall": recall}


if __name__ == "__main__":
    expected_version = "1.1"
    parser = argparse.ArgumentParser(description="Evaluation for SQuAD " + expected_version)
    parser.add_argument("dataset_file", help="Dataset file")
    parser.add_argument("prediction_file", help="Prediction File")
    args = parser.parse_args()
    with open(args.dataset_file) as dataset_file:
        dataset_json = json.load(dataset_file)
        if dataset_json["version"] != expected_version:
            print(
                "Evaluation expects v-" + expected_version + ", but got dataset with v-" + dataset_json["version"],
                file=sys.stderr,
            )
        dataset = dataset_json["data"]
    with open(args.prediction_file) as prediction_file:
        predictions = json.load(prediction_file)
    print(json.dumps(evaluate(dataset, predictions)))