Spaces:
Sleeping
Sleeping
File size: 7,225 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
"""Perplexity Metric. This file is adapted from: https://huggingface.co/spaces/evaluate-measurement/perplexity/blob/main/perplexity.py"""
import os
import numpy as np
import torch
from evaluate import logging
from torch.nn import CrossEntropyLoss
def perplexity(
texts,
model,
tokenizer,
batch_size: int = 16,
add_start_token: bool = True,
max_length=None,
only_return_loss=False,
):
"""Perplexity (PPL) can be used for evaluating to what extent a dataset is similar to the distribution of text that
a given model was trained on. It is defined as the exponentiated average negative log-likelihood of a sequence,
calculated with exponent base `e`.
For more information, see https://huggingface.co/docs/transformers/perplexity
Args:
texts (list of str): List of text strings.
model: model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
tokenizer: the corresponding tokenizer for the given model.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
"""
device = model.device
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
existing_special_tokens = list(tokenizer.special_tokens_map_extended.values())
# check that the model already has at least one special token defined
assert (
len(existing_special_tokens) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]})
if add_start_token and max_length:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
max_tokenized_len = max_length - 1
else:
max_tokenized_len = max_length
encodings = tokenizer(
texts,
add_special_tokens=False,
padding=True,
truncation=True if max_tokenized_len else False,
max_length=max_tokenized_len,
return_tensors="pt",
return_attention_mask=True,
).to(device)
encoded_texts = encodings["input_ids"]
attn_masks = encodings["attention_mask"]
# check that each input is long enough:
if add_start_token:
assert torch.all(
torch.ge(attn_masks.sum(1), 1)
), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1), 2)
), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
ppls = []
loss_fct = CrossEntropyLoss(reduction="none")
if only_return_loss:
all_losses, all_lengths = [], []
for start_index in logging.tqdm(
range(0, len(encoded_texts), batch_size),
disable=os.environ.get("DISABLE_TQDM", False),
):
end_index = min(start_index + batch_size, len(encoded_texts))
encoded_batch = encoded_texts[start_index:end_index]
attn_mask = attn_masks[start_index:end_index]
if add_start_token:
bos_tokens_tensor = torch.tensor(
[[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)
).to(device)
encoded_batch = torch.cat([bos_tokens_tensor, encoded_batch], dim=1)
attn_mask = torch.cat(
[
torch.ones(bos_tokens_tensor.size(), dtype=torch.int64).to(device),
attn_mask,
],
dim=1,
)
labels = encoded_batch
with torch.inference_mode():
out_logits = model(encoded_batch, attention_mask=attn_mask).logits
shift_logits = out_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_attention_mask_batch = attn_mask[..., 1:].contiguous()
loss = (
loss_fct(shift_logits.transpose(1, 2), shift_labels)
* shift_attention_mask_batch
).sum(1)
lengths = shift_attention_mask_batch.sum(1)
if only_return_loss:
all_losses.append(loss)
all_lengths.append(lengths)
else:
perplexity_batch = torch.exp(loss / lengths)
ppls += perplexity_batch.tolist()
if only_return_loss:
return all_losses, all_lengths
else:
return {"perplexities": ppls, "mean_perplexity": np.mean(ppls)}
def conditional_perplexity(
texts,
prefixes,
model,
tokenizer,
batch_size: int = 16,
add_start_token: bool = True,
max_length=None,
):
"""Computes the conditional perplexity for the case of prefix language modeling."""
full_texts = [f"{prefix}{text}" for prefix, text in zip(prefixes, texts)]
loss, lengths = perplexity(
full_texts,
model,
tokenizer,
batch_size,
add_start_token,
max_length,
only_return_loss=True,
)
prefix_loss, prefix_lengths = perplexity(
prefixes,
model,
tokenizer,
batch_size,
add_start_token,
max_length,
only_return_loss=True,
)
# Computing the perplexity over the whole examples.
ppls = []
total_nlls = 0
total_tokens = 0
for i in range(len(loss)):
perplexity_batch = torch.exp(
(loss[i] - prefix_loss[i]) / (lengths[i] - prefix_lengths[i])
)
ppls.extend(perplexity_batch.tolist())
total_nlls += torch.sum(loss[i] - prefix_loss[i]).item()
total_tokens += torch.sum(lengths[i] - prefix_lengths[i]).item()
ppls[ppls == float("inf")] = float("nan")
return {
"perplexities": ppls,
"mean_perplexity": np.nanmean(ppls),
"mean_perplexity_total": np.exp(total_nlls / total_tokens),
}
|