Spaces:
Sleeping
Sleeping
File size: 8,005 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from typing import Optional
import numpy as np
import torch
from torch import autograd
from transformers import RobertaForMaskedLM
from transformers.modeling_outputs import MaskedLMOutput
from sdlm.models.cdcd.cdf import LossCDF
from sdlm.models.roberta.configuration_roberta import RobertaDiffusionConfig
from sdlm.models.roberta.modeling_roberta import RobertaForDiffusionLM
# only difference is that we add n_bins to the config
class TokenwiseCDCDRobertaConfig(RobertaDiffusionConfig):
def __init__(self, *args, n_bins=100, **kwargs):
super().__init__(*args, **kwargs)
self.n_bins = n_bins
# Roberta with the CDF timestep warper.
class TokenwiseCDCDRobertaForDiffusionLM(RobertaForDiffusionLM):
def __init__(self, config):
super().__init__(config)
self.cdf = LossCDF(100)
# keep the hidden dim larger?
self.base_lm = RobertaForMaskedLM.from_pretrained("roberta-base")
self.linear_lu = torch.nn.Sequential(
torch.nn.Linear(self.config.hidden_size, self.config.hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(self.config.hidden_size, 100),
)
self.linear_lt = torch.nn.Sequential(
torch.nn.Linear(self.config.hidden_size, self.config.hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(self.config.hidden_size, 100),
)
self.start_lt = torch.zeros([100]) - float(np.log(100))
self.start_lu = torch.zeros([100]) - float(np.log(100))
# small starting a
self.linear_lu_start_a = torch.nn.Parameter(torch.zeros([1]) + 1)
self.linear_lt_start_a = torch.nn.Parameter(torch.zeros([1]) + 1)
def warp_timesteps(
self,
timesteps: torch.FloatTensor,
token_input: Optional[torch.LongTensor] = None,
t_min=0,
t_max=1,
):
# u has to be in normalized range...
if t_max - t_min > 0:
timesteps = (timesteps - t_min) / (t_max - t_min)
else:
# weird case, only really happens with 1 diffusion steps (tmin=0,tmax=0)
# in this case, we just set timesteps to 0
timesteps = timesteps - t_min
t_max = 1 # just to avoid div by 0
if token_input is None:
lu, lt = None, None
else:
# replace padding tokens with <mask> token
# to avoid model ignoring those tokens
token_input = torch.where(token_input == 1, 50264, token_input)
hidden_states = self.base_lm.roberta(
input_ids=token_input, output_hidden_states=True
).hidden_states[-1]
# predict out the new timesteps
lu = self.start_lu.to(
self.linear_lu_start_a.device
) + self.linear_lu_start_a * self.linear_lu(
torch.cat([hidden_states], dim=-1)
)
lt = self.start_lt.to(
self.linear_lu_start_a.device
) + self.linear_lt_start_a * self.linear_lt(
torch.cat([hidden_states], dim=-1)
)
# lu = self.linear_lu(previous_hidden)
# lt = self.linear_lt(previous_hidden)
# warp timesteps. sep. call so we can pass to scheduler
# detach so we don't backprop through this
return self.cdf(
u=timesteps, normalized=True, t_min=t_min, t_max=t_max, l_u=lu, l_t=lt
).detach()
def forward(
self,
timesteps: torch.FloatTensor,
input_ids: torch.LongTensor,
simplex: torch.FloatTensor,
span_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
previous_pred: Optional[torch.FloatTensor] = None,
classifier_free_guidance: bool = False,
classifier_free_guidance_in_train: bool = False,
max_timestep: int = 5000,
reduce_loss: str = "mean", # passed to 'reduction' in F.cross_entropy
# unconditional_simplex: torch.FloatTensor = None,
return_all_losses: bool = False, # return per-token loss for all items in batch):
previous_hidden: Optional[torch.FloatTensor] = None,
original_timesteps: Optional[torch.FloatTensor] = None,
):
output = super().forward(
timesteps,
input_ids,
simplex,
span_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
labels,
output_attentions,
output_hidden_states,
return_dict,
previous_pred,
classifier_free_guidance,
classifier_free_guidance_in_train,
max_timestep,
reduce_loss="none",
return_all_losses=True,
previous_hidden=previous_hidden, # for CDCD predictions...
)
loss = output.loss
if self.training:
# then we learn the cdf from the losses
# only in train mode, since in eval we just apply the warping.
new_timesteps_clone = timesteps.clone()
new_timesteps_clone.requires_grad = True
with torch.enable_grad():
# grab the predictions for the loss values - note at this point timesteps
# are normalised to [0, 1]
# at train time: we want to predict the tokens not in the span mask,
# replace with <mask>
token_input = torch.where((input_ids * span_mask) > 1, 50264, input_ids)
previous_hidden = self.base_lm.roberta(
input_ids=token_input, output_hidden_states=True
).hidden_states[-1]
if previous_hidden is None:
lu, lt = None, None
else:
lu = self.start_lu.to(
self.linear_lu_start_a.device
) + self.linear_lu_start_a * self.linear_lu(
torch.cat([previous_hidden], dim=-1)
)
lt = self.start_lt.to(
self.linear_lt_start_a.device
) + self.linear_lt_start_a * self.linear_lt(
torch.cat([previous_hidden], dim=-1)
)
# lu = self.linear_lu(previous_hidden)
# lt = self.linear_lt(previous_hidden)
xent_pred = self.cdf(
t=new_timesteps_clone, normalized=False, t_max=1, l_u=lu, l_t=lt
)
# importance weights -> reciprocal of grad of CDF.
imp_weights = (
1.0 / autograd.grad(xent_pred.sum(), [new_timesteps_clone])[0]
)
imp_weights = imp_weights.detach() * 1e-5
cdf_loss = imp_weights * (
self.cdf(t=timesteps, normalized=False, t_max=1, l_u=lu, l_t=lt)
- loss.detach()
).pow(2)
# mask regular input part of loss, since we don't warp this anyway.
# also mask out padding at the end.
cdf_loss = cdf_loss * span_mask * (input_ids != 1)
import pdb
pdb.set_trace()
loss = loss.mean() + cdf_loss.mean()
else:
loss = loss.mean()
return MaskedLMOutput(
loss=loss,
logits=output.logits,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
|