File size: 14,834 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from typing import List, Optional, Tuple, Union

import torch
from torch import autograd
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from transformers.cache_utils import Cache
from transformers.modeling_outputs import (
    MaskedLMOutput,
    SequenceClassifierOutputWithPast,
)

from sdlm.data.data_utils import pad_sequence
from sdlm.models.cdcd.cdf import LossCDF
from sdlm.utils import mix_values_based_on_self_condition


class DiffusionModelMixin:
    def forward(
        self,
        timesteps: torch.FloatTensor,
        input_ids: torch.LongTensor,
        simplex: torch.FloatTensor,
        span_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        previous_pred: Optional[torch.FloatTensor] = None,
        reduce_loss: str = "mean",
        attention_mask: Optional[torch.LongTensor] =None,
        **kwargs,
    ):
        # simplex -> weighted avg embedding
        inputs_probs = F.softmax(simplex, dim=-1)
        inputs_embeds = self.vocab_to_hidden_dim_embed(inputs_probs)

        if self.config.self_condition is not None:
            if previous_pred is None:
                previous_pred = torch.zeros_like(simplex, device=simplex.device)
            previous_pred_probs = F.softmax(previous_pred, dim=-1)
            if not self.config.self_condition_mix_logits_before_weights:
                previous_pred = self.vocab_to_hidden_dim_embed(previous_pred_probs)
            # In this setting, we mix the probabilities then apply the weight.
            if self.config.self_condition_mix_before_weights:
                mixed_probs = mix_values_based_on_self_condition(
                    self.config.self_condition, inputs_probs, previous_pred_probs
                )
                inputs_embeds = self.vocab_to_hidden_dim_embed(mixed_probs)

        # Original word embeddings without noise.
        inputs_word_embeds = self.get_input_embeddings()(input_ids)
        if not self.config.disable_timestep_embed:
            timesteps = torch.where(span_mask, timesteps, torch.zeros_like(timesteps))
            timesteps_embed = self.timestep_embed(timesteps.unsqueeze(-1).float())
            inputs_embeds = inputs_embeds + timesteps_embed
        # For the unmasked tokens, we only compute their original word embeddings.
        # Note that this also sets the self-conditioned inputs which we are conditioning on
        # to their original word embeddings values.
        inputs_embeds = torch.where(
            span_mask.unsqueeze(-1), inputs_embeds, inputs_word_embeds
        )

        outputs = self.model(
            input_ids=None,  # TODO(rabeeh): we can remove this hack when we moved loss to outside.
            attention_mask=attention_mask,  #  only used for dealing with padding during evals
            position_ids=position_ids,
            past_key_values=None,
            inputs_embeds=inputs_embeds,
            use_cache=False,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)
        masked_lm_loss = None

        if input_ids is not None:
            prediction_scores_for_loss = prediction_scores
            loss_fct = CrossEntropyLoss(reduction=reduce_loss)
            labels = (
                torch.where(span_mask, input_ids, -100)
                if span_mask is not None
                else input_ids
            )
            if self.config.mask_padding_in_loss:
                # also mask padding token loss....
                labels = torch.where(labels == self.config.pad_token_id, -100, labels)
            # important: shift labels to the right by one, mimicking the causal pretraining
            labels = labels[:, 1:]
            prediction_scores_for_loss = prediction_scores_for_loss[:, :-1]
            masked_lm_loss = loss_fct(
                prediction_scores_for_loss.reshape(-1, self.config.vocab_size),
                labels.reshape(-1),
            )
            if reduce_loss == "none":
                # take the average loss over tokens, not counting the masked tokens.
                masked_lm_loss = masked_lm_loss.view(input_ids.shape[0], -1)
                masked_lm_loss = masked_lm_loss.sum(dim=-1) / span_mask.sum(dim=-1)

        # shift our logits forward by one, so that input->output match
        prediction_scores = prediction_scores[:, :-1]
        # add back in our start tok.
        padding_pred = torch.zeros_like(prediction_scores[:, 0])[:, None]
        prediction_scores = torch.cat([padding_pred, prediction_scores], dim=1)
        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.last_hidden_state,
            attentions=outputs.attentions,
        )


class CDCDDiffusionModelMixin(DiffusionModelMixin):
    def __init__(self, config):
        super().__init__(config)
        self.cdf = LossCDF(config.n_bins)

    def warp_timesteps(
        self,
        timesteps: torch.FloatTensor,
        token_input=None,
        t_min=0,
        t_max=1,
        **kwargs,
    ):
        # u has to be in normalized range...
        if t_max - t_min > 0:
            timesteps = (timesteps - t_min) / (t_max - t_min)
        else:
            # weird case, only really happens with 1 diffusion steps (tmin=0,tmax=0)
            # in this case, we just set timesteps to 0
            timesteps = timesteps - t_min
            t_max = 1  # just to avoid div by 0
        # warp timesteps. sep. call so we can pass to scheduler
        # detach so we don't backprop through this
        return self.cdf(u=timesteps, normalized=True, t_min=t_min, t_max=t_max).detach()

    def forward(
        self,
        timesteps: torch.FloatTensor,
        input_ids: torch.LongTensor,
        simplex: torch.FloatTensor,
        span_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        previous_pred: Optional[torch.FloatTensor] = None,
        reduce_loss: str = "mean",
        **kwargs,
    ):
        output = super().forward(
            timesteps=timesteps,
            input_ids=input_ids,
            simplex=simplex,
            span_mask=span_mask,
            position_ids=position_ids,
            labels=labels,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            previous_pred=previous_pred,
            reduce_loss=reduce_loss,
            **kwargs,
        )
        loss = output.loss
        # NOTE: need inference mode check to prevent cdf loss computation
        # for prev generation in self-conditioning
        if self.training and not torch.is_inference_mode_enabled():
            # then we learn the cdf from the losses
            # only in train mode, since in eval we just apply the warping.
            new_timesteps_clone = timesteps.clone()
            new_timesteps_clone.requires_grad = True
            with torch.enable_grad():
                # grab the predictions for the loss values - note at this point timesteps
                # are normalised to [0, 1]
                xent_pred = self.cdf(t=new_timesteps_clone, normalized=False, t_max=1)
                # importance weights -> reciprocal of grad of CDF.
                imp_weights = (
                    1.0 / autograd.grad(xent_pred.sum(), [new_timesteps_clone])[0]
                )[:, 0]
            imp_weights = imp_weights.detach() * 1e-5
            # just one index of timesteps since all are the same. required for compat with tokenwise
            cdf_loss = (
                imp_weights
                * (
                    self.cdf(t=timesteps, normalized=False, t_max=1)[:, 0]
                    - loss.detach()
                ).pow(2)
            ).mean()
            loss = loss.mean() + cdf_loss  # upweight cdf loss as its too small :(
        else:
            loss = loss.mean()
        return MaskedLMOutput(
            loss=loss,
            logits=output.logits,
            hidden_states=output.hidden_states,
            attentions=output.attentions,
        )


class CausalLMForSeq2SeqMixin:
    def forward(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        past_key_values=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        pad_lengths=None,
        context_lengths=None,
    ):
        """
        HACK: added input lengths to forward args for generate(),
        otherwise `Trainer`'s `remove_unused_columns` will remove all
        keys from kwargs.
        """
        return super().forward(
            input_ids,
            attention_mask,
            position_ids,
            past_key_values,
            inputs_embeds,
            labels,
            use_cache,
            output_attentions,
            output_hidden_states,
            return_dict,
        )

    @torch.inference_mode()
    def generate(self, *args, **kwargs):
        context_tokens = []
        # labels not needed for generation
        del kwargs["labels"]
        input_ids = kwargs.pop("input_ids")
        if "pad_lengths" in kwargs:
            pad_lengths = kwargs.pop("pad_lengths")
            context_lengths = kwargs.pop("context_lengths")
            for input_id, pad_length, context_length in zip(
                input_ids, pad_lengths, context_lengths
            ):
                # grab non-padding context, without labels
                context_tokens.append(
                    input_id[pad_length : pad_length + context_length]
                )
        else:
            context_tokens = input_ids
        input_ids = pad_sequence(
            context_tokens,
            padding_value=self.config.pad_token_id,
            batch_first=True,
            padding_side=self.config.padding_side,
        )
        kwargs["input_ids"] = input_ids.to(self.device)
        kwargs["attention_mask"] = ~(kwargs["input_ids"] == self.config.pad_token_id)
        # need to set to false due to flash attention
        kwargs["use_cache"] = False
        kwargs["max_new_tokens"] = kwargs.get("max_length", 512)
        kwargs.pop("max_length", None)
        outputs = super().generate(*args, **kwargs)
        seq_len = input_ids.size(1)
        output_ids = outputs[:, seq_len:]
        return output_ids.to(self.device)


class PaddingIncludedSequenceClassificationMixin:
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        # we always use the last hidden state for classification
        # this is the only change from the original implementation
        sequence_lengths = -1

        pooled_logits = logits[
            torch.arange(batch_size, device=logits.device), sequence_lengths
        ]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(
                    pooled_logits.view(-1, self.num_labels), labels.view(-1)
                )
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )