File size: 10,768 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
from typing import Optional

import torch
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers.models.mistral import MistralConfig, MistralForCausalLM

from .ar_warp.ar_warper import GARDiffusionLM
from .cdcd.ar_warper import CDCDGARRobertaForDiffusionLM
from .cdcd.positionwise_warper_model import (
    PositionwiseCDCDRobertaConfig,
    PositionwiseCDCDRobertaForDiffusionLM,
)
from .cdcd.tokenwise_warper_model import TokenwiseCDCDRobertaForDiffusionLM
from .cdcd.warper_model import CDCDRobertaConfig, CDCDRobertaForDiffusionLM
from .confidence_tracker.confidence_tracker_model import (
    ConfidenceTrackerRobertaDiffusionLM,
)
from .llama.configuration_llama import LlamaDiffusionConfig
from .llama.modeling_llama import LlamaForDiffusionLM, LlamaForSeq2SeqLM
from .mistral.configuration_mistral import (
    CDCDMistralDiffusionConfig,
    MistralDiffusionConfig,
)
from .mistral.modeling_mistral import (
    CDCDMistralForDiffusionLM,
    MistralForDiffusionLM,
    MistralForSeq2SeqLM,
)
from .mixins.modeling_mixin import CDCDDiffusionModelMixin
from .roberta.configuration_roberta import RobertaDiffusionConfig
from .roberta.modeling_roberta import RobertaForDiffusionLM

def model_config_helper(
    model_name_or_path: str,
    use_model: str = "cdcd",
    is_diffusion: bool = True,
    conditional_generation: Optional[str] = None,
):
    if "llama" in model_name_or_path.lower():
        if conditional_generation == "seq2seq" and not is_diffusion:
            return LlamaDiffusionConfig, LlamaForSeq2SeqLM
        return LlamaDiffusionConfig, LlamaForDiffusionLM
    if "mistral" in model_name_or_path.lower():
        if conditional_generation == "seq2seq" and not is_diffusion:
            return MistralDiffusionConfig, MistralForSeq2SeqLM
        if conditional_generation is None and not is_diffusion:
            return MistralConfig, MistralForCausalLM
        if use_model == "cdcd":
            return CDCDMistralDiffusionConfig, CDCDMistralForDiffusionLM
        return MistralDiffusionConfig, MistralForDiffusionLM
    if "roberta" in model_name_or_path and use_model == "cdcd":
        return CDCDRobertaConfig, CDCDRobertaForDiffusionLM
    elif "roberta" in model_name_or_path and use_model == "tokenwise_cdcd":
        return CDCDRobertaConfig, TokenwiseCDCDRobertaForDiffusionLM
    elif "roberta" in model_name_or_path and use_model == "positionwise_cdcd":
        return PositionwiseCDCDRobertaConfig, PositionwiseCDCDRobertaForDiffusionLM
    elif "roberta" in model_name_or_path and use_model == "confidence":
        return RobertaDiffusionConfig, ConfidenceTrackerRobertaDiffusionLM
    elif "roberta" in model_name_or_path:
        print(
            f"Using RobertaDiffusionConfig and RobertaForDiffusionLM for {model_name_or_path}"
        )
        return RobertaDiffusionConfig, RobertaForDiffusionLM
    elif "roberta" in model_name_or_path and use_model == "cdcdgar":
        return CDCDRobertaConfig, CDCDGARRobertaForDiffusionLM
    # default to mistral
    if use_model == "cdcd":
        print(
            f"Using CDCDMistralDiffusionConfig and CDCDMistralForDiffusionLM for {model_name_or_path}"
        )
        return CDCDMistralDiffusionConfig, CDCDMistralForDiffusionLM
    print(
        f"Using MistralDiffusionConfig and MistralForDiffusionLM for {model_name_or_path}"
    )
    return MistralDiffusionConfig, MistralForDiffusionLM


def is_cdcd_check(model):
    return (
        isinstance(model, CDCDDiffusionModelMixin)
        or isinstance(model, CDCDMistralForDiffusionLM)
        or isinstance(model, CDCDRobertaForDiffusionLM)
        or isinstance(model, TokenwiseCDCDRobertaForDiffusionLM)
        or isinstance(model, PositionwiseCDCDRobertaForDiffusionLM)
        or isinstance(model, GARDiffusionLM)
        or isinstance(model, CDCDGARRobertaForDiffusionLM)
    )


def is_tokenwise_cdcd_check(model):
    return isinstance(model, TokenwiseCDCDRobertaForDiffusionLM) or isinstance(
        model, PositionwiseCDCDRobertaForDiffusionLM
    )


def freeze(module):
    for param in module.parameters():
        param.requires_grad = False


def get_torch_dtype(training_args):
    torch_dtype = torch.float32
    if training_args.bf16:
        torch_dtype = torch.bfloat16
    elif training_args.fp16:
        torch_dtype = torch.float16
    return torch_dtype


def load_model(model_args, data_args, training_args, diffusion_args, logger):
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    cfg_cls, model_cls = model_config_helper(
        model_args.model_name_or_path,
        use_model=model_args.use_model,
        is_diffusion=diffusion_args.num_diffusion_steps > 0,
        conditional_generation=data_args.conditional_generation,
    )
    config = cfg_cls.from_pretrained(
        model_args.model_name_or_path,
        self_condition=diffusion_args.self_condition,
        self_condition_zeros_after_softmax=diffusion_args.self_condition_zeros_after_softmax,
        deepmind_conditional=diffusion_args.deepmind_conditional,
        classifier_free_simplex_inputs=diffusion_args.classifier_free_simplex_inputs,
        classifier_free_uncond_input=diffusion_args.classifier_free_uncond_input,
        self_condition_mlp_projection=diffusion_args.self_condition_mlp_projection,
        self_condition_mix_before_weights=diffusion_args.self_condition_mix_before_weights,
        self_condition_mix_logits_before_weights=diffusion_args.self_condition_mix_logits_before_weights,
        empty_token_be_mask=diffusion_args.empty_token_be_mask,
        is_causal=model_args.is_causal,
        mask_padding_in_loss=training_args.mask_padding_in_loss,
        padding_side=model_args.tokenizer_padding_side,
        token=os.environ.get("HF_TOKEN", None),
        **config_kwargs,
    )
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "padding_side": model_args.tokenizer_padding_side,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name,
            token=os.environ.get("HF_TOKEN", None),
            **tokenizer_kwargs,
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            token=os.environ.get("HF_TOKEN", None),
            **tokenizer_kwargs,
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    try:
        tokenizer.add_eos_token = True
    except AttributeError:
        # roberta does not have this
        pass

    if model_args.model_name_or_path and not model_args.from_scratch:
        model = model_cls.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            torch_dtype=get_torch_dtype(training_args),
            token=os.environ.get("HF_TOKEN", None),
            attn_implementation="flash_attention_2"
            if model_args.use_flash_attention2
            else "eager",
        ).to("cuda")
        if model_args.freeze_embedding:
            model.get_input_embeddings().requires_grad = False
        if model_args.freeze_model:
            freeze(model)
    else:
        logger.warning("Training new model from scratch")
        model = model_cls._from_config(config)
        model.init_weights()

    if not tokenizer.pad_token_id:
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})

    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    vocab_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > vocab_size:
        model.resize_token_embeddings(len(tokenizer))
        model.config.pad_token_id = tokenizer.pad_token_id

    # if peft, apply it here
    if model_args.use_lora:
        peft_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM,
            inference_mode=False,
            r=model_args.lora_rank,
            lora_alpha=model_args.lora_alpha,
            lora_dropout=model_args.lora_dropout,
        )
        # we just peft the internal model.
        # a little hacky, remove the task type wrapper class
        # TODO: does this cook anything?
        model.model = get_peft_model(model.model, peft_config).base_model

    # apply liger monkey patching
    if model_args.use_liger_kernel:
        from liger_kernel.transformers import apply_liger_kernel_to_mistral
        apply_liger_kernel_to_mistral()

    return tokenizer, model


def load_classifier(classifier_model_name_or_path: str):
    tokenizer = AutoTokenizer.from_pretrained(classifier_model_name_or_path)
    model = AutoModelForSequenceClassification.from_pretrained(
        classifier_model_name_or_path,
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2",
    ).eval()
    model.gradient_checkpointing_enable()
    # NOTE: for quick testing (reduce vram req)
    # model.model.layers = torch.nn.ModuleList([model.model.layers[0]])
    freeze(model)
    # from liger_kernel.transformers import apply_liger_kernel_to_mistral
    # apply_liger_kernel_to_mistral()
    return tokenizer, model


def check_tokenizer_equal(tokenizer1, tokenizer2):
    # check class
    assert tokenizer1.__class__ is tokenizer2.__class__
    # check vocab size
    assert tokenizer1.vocab_size == tokenizer2.vocab_size
    # check special tokens size
    assert len(tokenizer1.special_tokens_map) == len(tokenizer2.special_tokens_map)
    # check special tokens
    for special_token in ("bos", "eos", "unk", "pad"):
        attr = f"{special_token}_token_id"
        assert getattr(tokenizer1, attr) == getattr(tokenizer2, attr)
    # full decoding check
    for i in range(tokenizer1.vocab_size + len(tokenizer1.special_tokens_map)):
        decoded1 = tokenizer1.decode([i])
        decoded2 = tokenizer2.decode([i])
        assert decoded1 == decoded2