Spaces:
Sleeping
Sleeping
File size: 10,768 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
from typing import Optional
import torch
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers.models.mistral import MistralConfig, MistralForCausalLM
from .ar_warp.ar_warper import GARDiffusionLM
from .cdcd.ar_warper import CDCDGARRobertaForDiffusionLM
from .cdcd.positionwise_warper_model import (
PositionwiseCDCDRobertaConfig,
PositionwiseCDCDRobertaForDiffusionLM,
)
from .cdcd.tokenwise_warper_model import TokenwiseCDCDRobertaForDiffusionLM
from .cdcd.warper_model import CDCDRobertaConfig, CDCDRobertaForDiffusionLM
from .confidence_tracker.confidence_tracker_model import (
ConfidenceTrackerRobertaDiffusionLM,
)
from .llama.configuration_llama import LlamaDiffusionConfig
from .llama.modeling_llama import LlamaForDiffusionLM, LlamaForSeq2SeqLM
from .mistral.configuration_mistral import (
CDCDMistralDiffusionConfig,
MistralDiffusionConfig,
)
from .mistral.modeling_mistral import (
CDCDMistralForDiffusionLM,
MistralForDiffusionLM,
MistralForSeq2SeqLM,
)
from .mixins.modeling_mixin import CDCDDiffusionModelMixin
from .roberta.configuration_roberta import RobertaDiffusionConfig
from .roberta.modeling_roberta import RobertaForDiffusionLM
def model_config_helper(
model_name_or_path: str,
use_model: str = "cdcd",
is_diffusion: bool = True,
conditional_generation: Optional[str] = None,
):
if "llama" in model_name_or_path.lower():
if conditional_generation == "seq2seq" and not is_diffusion:
return LlamaDiffusionConfig, LlamaForSeq2SeqLM
return LlamaDiffusionConfig, LlamaForDiffusionLM
if "mistral" in model_name_or_path.lower():
if conditional_generation == "seq2seq" and not is_diffusion:
return MistralDiffusionConfig, MistralForSeq2SeqLM
if conditional_generation is None and not is_diffusion:
return MistralConfig, MistralForCausalLM
if use_model == "cdcd":
return CDCDMistralDiffusionConfig, CDCDMistralForDiffusionLM
return MistralDiffusionConfig, MistralForDiffusionLM
if "roberta" in model_name_or_path and use_model == "cdcd":
return CDCDRobertaConfig, CDCDRobertaForDiffusionLM
elif "roberta" in model_name_or_path and use_model == "tokenwise_cdcd":
return CDCDRobertaConfig, TokenwiseCDCDRobertaForDiffusionLM
elif "roberta" in model_name_or_path and use_model == "positionwise_cdcd":
return PositionwiseCDCDRobertaConfig, PositionwiseCDCDRobertaForDiffusionLM
elif "roberta" in model_name_or_path and use_model == "confidence":
return RobertaDiffusionConfig, ConfidenceTrackerRobertaDiffusionLM
elif "roberta" in model_name_or_path:
print(
f"Using RobertaDiffusionConfig and RobertaForDiffusionLM for {model_name_or_path}"
)
return RobertaDiffusionConfig, RobertaForDiffusionLM
elif "roberta" in model_name_or_path and use_model == "cdcdgar":
return CDCDRobertaConfig, CDCDGARRobertaForDiffusionLM
# default to mistral
if use_model == "cdcd":
print(
f"Using CDCDMistralDiffusionConfig and CDCDMistralForDiffusionLM for {model_name_or_path}"
)
return CDCDMistralDiffusionConfig, CDCDMistralForDiffusionLM
print(
f"Using MistralDiffusionConfig and MistralForDiffusionLM for {model_name_or_path}"
)
return MistralDiffusionConfig, MistralForDiffusionLM
def is_cdcd_check(model):
return (
isinstance(model, CDCDDiffusionModelMixin)
or isinstance(model, CDCDMistralForDiffusionLM)
or isinstance(model, CDCDRobertaForDiffusionLM)
or isinstance(model, TokenwiseCDCDRobertaForDiffusionLM)
or isinstance(model, PositionwiseCDCDRobertaForDiffusionLM)
or isinstance(model, GARDiffusionLM)
or isinstance(model, CDCDGARRobertaForDiffusionLM)
)
def is_tokenwise_cdcd_check(model):
return isinstance(model, TokenwiseCDCDRobertaForDiffusionLM) or isinstance(
model, PositionwiseCDCDRobertaForDiffusionLM
)
def freeze(module):
for param in module.parameters():
param.requires_grad = False
def get_torch_dtype(training_args):
torch_dtype = torch.float32
if training_args.bf16:
torch_dtype = torch.bfloat16
elif training_args.fp16:
torch_dtype = torch.float16
return torch_dtype
def load_model(model_args, data_args, training_args, diffusion_args, logger):
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
cfg_cls, model_cls = model_config_helper(
model_args.model_name_or_path,
use_model=model_args.use_model,
is_diffusion=diffusion_args.num_diffusion_steps > 0,
conditional_generation=data_args.conditional_generation,
)
config = cfg_cls.from_pretrained(
model_args.model_name_or_path,
self_condition=diffusion_args.self_condition,
self_condition_zeros_after_softmax=diffusion_args.self_condition_zeros_after_softmax,
deepmind_conditional=diffusion_args.deepmind_conditional,
classifier_free_simplex_inputs=diffusion_args.classifier_free_simplex_inputs,
classifier_free_uncond_input=diffusion_args.classifier_free_uncond_input,
self_condition_mlp_projection=diffusion_args.self_condition_mlp_projection,
self_condition_mix_before_weights=diffusion_args.self_condition_mix_before_weights,
self_condition_mix_logits_before_weights=diffusion_args.self_condition_mix_logits_before_weights,
empty_token_be_mask=diffusion_args.empty_token_be_mask,
is_causal=model_args.is_causal,
mask_padding_in_loss=training_args.mask_padding_in_loss,
padding_side=model_args.tokenizer_padding_side,
token=os.environ.get("HF_TOKEN", None),
**config_kwargs,
)
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"padding_side": model_args.tokenizer_padding_side,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name,
token=os.environ.get("HF_TOKEN", None),
**tokenizer_kwargs,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
token=os.environ.get("HF_TOKEN", None),
**tokenizer_kwargs,
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
try:
tokenizer.add_eos_token = True
except AttributeError:
# roberta does not have this
pass
if model_args.model_name_or_path and not model_args.from_scratch:
model = model_cls.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
torch_dtype=get_torch_dtype(training_args),
token=os.environ.get("HF_TOKEN", None),
attn_implementation="flash_attention_2"
if model_args.use_flash_attention2
else "eager",
).to("cuda")
if model_args.freeze_embedding:
model.get_input_embeddings().requires_grad = False
if model_args.freeze_model:
freeze(model)
else:
logger.warning("Training new model from scratch")
model = model_cls._from_config(config)
model.init_weights()
if not tokenizer.pad_token_id:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
vocab_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > vocab_size:
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
# if peft, apply it here
if model_args.use_lora:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=model_args.lora_rank,
lora_alpha=model_args.lora_alpha,
lora_dropout=model_args.lora_dropout,
)
# we just peft the internal model.
# a little hacky, remove the task type wrapper class
# TODO: does this cook anything?
model.model = get_peft_model(model.model, peft_config).base_model
# apply liger monkey patching
if model_args.use_liger_kernel:
from liger_kernel.transformers import apply_liger_kernel_to_mistral
apply_liger_kernel_to_mistral()
return tokenizer, model
def load_classifier(classifier_model_name_or_path: str):
tokenizer = AutoTokenizer.from_pretrained(classifier_model_name_or_path)
model = AutoModelForSequenceClassification.from_pretrained(
classifier_model_name_or_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
).eval()
model.gradient_checkpointing_enable()
# NOTE: for quick testing (reduce vram req)
# model.model.layers = torch.nn.ModuleList([model.model.layers[0]])
freeze(model)
# from liger_kernel.transformers import apply_liger_kernel_to_mistral
# apply_liger_kernel_to_mistral()
return tokenizer, model
def check_tokenizer_equal(tokenizer1, tokenizer2):
# check class
assert tokenizer1.__class__ is tokenizer2.__class__
# check vocab size
assert tokenizer1.vocab_size == tokenizer2.vocab_size
# check special tokens size
assert len(tokenizer1.special_tokens_map) == len(tokenizer2.special_tokens_map)
# check special tokens
for special_token in ("bos", "eos", "unk", "pad"):
attr = f"{special_token}_token_id"
assert getattr(tokenizer1, attr) == getattr(tokenizer2, attr)
# full decoding check
for i in range(tokenizer1.vocab_size + len(tokenizer1.special_tokens_map)):
decoded1 = tokenizer1.decode([i])
decoded2 = tokenizer2.decode([i])
assert decoded1 == decoded2
|