File size: 18,488 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
""" Finetuning the library models for sequence classification on GLUE."""

import logging
import os
import random
import sys

import datasets
import numpy as np
import transformers
from datasets import load_dataset
from transformers import AutoTokenizer, set_seed
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version

from .arguments import get_args
from .data.data_collator import DataCollatorForSeq2Seq
from .data.data_utils import split_glue
from .data.postprocessors import get_post_processor
from .data.sni.sni_collator import DataCollatorForNI
from .inference.inference_utils import process_text
from .metrics.metrics import get_glue_metrics
from .models import load_model
from .schedulers import TokenWiseSimplexDDPMScheduler
from .trainers.trainer_diffusion import DiffusionTrainer
from .utils import lmap

# This is computed with scripts/compute_max_tokens_of_labels.py
MAX_LABEL_LENGTH = 5
check_min_version("4.25.0")

require_version("datasets>=1.8.0")

task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
    "sni": ("inputs", None),
}

task_to_metric = {
    "cola": "matthews_correlation",
    "mnli": "accuracy",
    "mrpc": "combined_score",
    "qnli": "accuracy",
    "qqp": "combined_score",
    "rte": "accuracy",
    "sst2": "accuracy",
    "stsb": "combined_score",
    "wnli": "accuracy",
    "sni": "rouge",
}

logger = logging.getLogger(__name__)


def main():
    # parse args
    model_args, data_args, training_args, diffusion_args = get_args()
    assert data_args.dataset_name is not None
    data_args.dataset_name = data_args.dataset_name.lower()
    if data_args.dataset_name not in task_to_keys.keys():
        raise ValueError(
            "Unknown task, you should pick one in " + ",".join(task_to_keys.keys())
        )

    if training_args.checkpoint_best_model:
        # TODO: ask which one they report and use the one needed here.
        # TODO: test both simplex and logits.
        training_args.metric_for_best_model = (
            "pred_texts_from_simplex_masked_" + task_to_metric[data_args.dataset_name]
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if (
        os.path.isdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif (
            last_checkpoint is not None and training_args.resume_from_checkpoint is None
        ):
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # load tokenizer early
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name
        else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Downloading and loading a dataset from the hub.
    if data_args.dataset_name == "sni":
        raw_datasets = load_dataset(
            "sdlm/data/sni/sni_dataset.py",
            cache_dir=model_args.cache_dir,
            trust_remote_code=True,
            use_auth_token=True if model_args.use_auth_token else None,
        )
        # sni has validation / test
        raw_datasets["validation"] = raw_datasets["test"]
        # map into simple (inputs, labels) format
        # makes easy to explore few-shot formats if we want.
        collator = DataCollatorForNI(
            tokenizer,
            text_only=True,
            num_pos_examples=0,
            max_source_length=data_args.max_source_length,
            max_target_length=data_args.max_target_length,
        )
        raw_datasets = raw_datasets.map(
            collator,
            batched=False,
            num_proc=12,  # lazy hardcode
            # load_from_cache_file=False,
        )
    else:
        raw_datasets = load_dataset(
            "glue",
            data_args.dataset_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    # for glue tasks, grab the string labels
    # currently not working in eval TODO: bugfix this
    # if data_args.dataset_name != "sni":
    #     if data_args.dataset_name != "stsb":
    #         label_list = raw_datasets["train"].features["label"].names
    #         raw_datasets = raw_datasets.cast_column(
    #             "label", Value(dtype="string", id=None)
    #         )
    #         # map labels to the strings
    #         raw_datasets = raw_datasets.map(
    #             lambda x: {"label": label_list[int(x["label"])].replace("_", " ")},
    #         )
    #     else:
    #         # stsb in t5 style - round stsb values
    #         label_list = [str(x / 5.0) for x in range(26)]
    #         raw_datasets = raw_datasets.cast_column(
    #             "label", Value(dtype="string", id=None)
    #         )
    #         raw_datasets = raw_datasets.map(
    #             lambda x: {"label": f"{(round(float(x['label'])*5) / 5):.1f}"},
    #         )

    # Split dataset, since test sets of GLUE do not have the labels.
    if data_args.split_glue:
        raw_datasets = split_glue(
            raw_datasets, data_args.dataset_name, data_args.glue_split_seed
        )
    elif data_args.dataset_name == "mnli":
        raw_datasets["validation"] = raw_datasets[
            "validation_matched"
        ]  # mismatched is for reverse, and for normal is matched.
        raw_datasets["test"] = raw_datasets["test_matched"]

    # shuffle our datasets with the split_seed (split glue does this but otherwise not.)
    raw_datasets = raw_datasets.shuffle(data_args.glue_split_seed)

    # load model
    tokenizer, model = load_model(
        model_args, data_args, training_args, diffusion_args, logger
    )

    # Preprocessing the raw_datasets
    sentence1_key, sentence2_key = task_to_keys[data_args.dataset_name]

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def preprocess_function(examples):
        # TODO: here max_length should be max_length minus length of labels.
        # TODO: this is for now, but maybe compute one max_length as a whole.
        # Tokenize the labels.
        targets = [str(label) for label in examples["label"]]
        # we have to set this, truncate.
        max_sni_lengths = 128
        labels = tokenizer(
            text_target=targets,
            max_length=max_seq_length
            if data_args.dataset_name != "sni"
            else max_sni_lengths,
            padding=False,
            truncation=True,
        )
        # sni has long responses, while glue is all classification
        max_label_length = (
            MAX_LABEL_LENGTH if data_args.dataset_name != "sni" else max_sni_lengths
        )

        args = (
            (examples[sentence1_key],)
            if sentence2_key is None
            else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(
            *args,
            padding=False,
            max_length=max_seq_length - max_label_length,
            truncation=True,
        )
        result["labels"] = labels["input_ids"]
        return result

    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            num_proc=data_args.preprocessing_num_workers,
            desc="Running tokenizer on dataset",
        )
    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))

    def preprocess_logits_for_metrics(logits):
        return logits.argmax(dim=-1)

    if (
        training_args.do_predict
        or data_args.dataset_name is not None
        or data_args.test_file is not None
    ):
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_datasets = (
            [raw_datasets["test"]]
            if data_args.dataset_name != "mnli"
            else [raw_datasets["test_matched"]]
        )
        if data_args.dataset_name == "mnli":
            predict_datasets.append(raw_datasets["test_mismatched"])

        if data_args.max_predict_samples is not None:
            for i in range(len(predict_datasets)):
                max_predict_samples = min(
                    len(predict_datasets[i]), data_args.max_predict_samples
                )
                predict_datasets[i] = predict_datasets[i].select(
                    range(max_predict_samples)
                )

    # Log a few random samples from the training set:
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    task_metrics = get_glue_metrics(data_args.dataset_name)

    def postprocess_text(texts):
        return lmap(str.strip, texts)

    # TODO: we maybe need to pad till the sentences, and then predict the tokens we need for the few ones we need.
    def compute_metrics(results):
        post_processor = get_post_processor(data_args.dataset_name)

        # TODO: we need to change the metrics here.
        keys = ["pred_texts_from_simplex_masked", "pred_texts_from_logits_masked"]
        decoded_labels = postprocess_text(process_text(results["gold_texts_masked"]))
        if post_processor is not None:
            decoded_labels = [post_processor(x) for x in decoded_labels]

        metrics = {}
        for key in keys:
            decoded_preds = postprocess_text(process_text(results[key]))
            if post_processor is not None:
                decoded_preds = [post_processor(x) for x in decoded_preds]
            key_metrics = {}
            for metric in task_metrics:
                key_metrics.update(
                    metric(predictions=decoded_preds, targets=decoded_labels)
                )
            if len(key_metrics) > 1:
                key_metrics["combined_score"] = np.mean(
                    list(key_metrics.values())
                ).item()
            key_metrics = {f"{key}_{k}": v for k, v in key_metrics.items()}
            metrics.update(key_metrics)

        return metrics

    # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
    # we already did the padding.
    # Data collator. To be consistent with the run_mlm.py we need to add `mode`.
    data_collator = lambda mode: DataCollatorForSeq2Seq(  # noqa: E731
        tokenizer,
        # Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus.
        padding="max_length" if data_args.pad_to_max_length else True,
        max_length=data_args.max_seq_length,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )

    # init schedulers
    noise_scheduler = TokenWiseSimplexDDPMScheduler(
        num_train_timesteps=diffusion_args.num_diffusion_steps,
        beta_schedule=diffusion_args.beta_schedule,
        simplex_value=diffusion_args.simplex_value,
        clip_sample=diffusion_args.clip_sample,
        device=training_args.device,
    )
    inference_noise_schedulers = [
        TokenWiseSimplexDDPMScheduler(
            num_train_timesteps=timesteps,
            beta_schedule=diffusion_args.beta_schedule,
            simplex_value=diffusion_args.simplex_value,
            clip_sample=diffusion_args.clip_sample,
            device=training_args.device,
        )
        for timesteps in diffusion_args.num_inference_diffusion_steps
    ]

    # Initialize our Trainer
    trainer = DiffusionTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if (training_args.do_eval or training_args.do_predict)
        else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if (training_args.do_eval or training_args.do_predict)
        else None,
        noise_scheduler=noise_scheduler,
        diffusion_args=diffusion_args,
        data_args=data_args,
        inference_noise_schedulers=inference_noise_schedulers,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples
            if data_args.max_train_samples is not None
            else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.save_model()  # Saves the tokenizer too for easy upload

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # We will load the best model here to avoid an issue when do_train is not set.
    if training_args.load_states_in_eval_from_model_path and not training_args.do_train:
        trainer.state = TrainerState.load_from_json(
            os.path.join(model_args.model_name_or_path, "trainer_state.json")
        )
        if (
            training_args.load_best_model_at_end
            and trainer.state.best_model_checkpoint is not None
        ):
            checkpoint_path = trainer.state.best_model_checkpoint
        else:
            checkpoint_path = model_args.model_name_or_path
        trainer._load_from_checkpoint(checkpoint_path)
        trainer._load_rng_state(checkpoint_path)

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (
            data_args.max_eval_samples
            if data_args.max_eval_samples is not None
            else len(eval_dataset)
        )
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Test ***")
        for i, predict_dataset in enumerate(predict_datasets):
            metric_key_prefix = f"test_{i}"
            metrics = trainer.evaluate(
                eval_dataset=predict_dataset, metric_key_prefix=metric_key_prefix
            )
            max_predict_samples = (
                data_args.max_predict_samples
                if data_args.max_predict_samples is not None
                else len(predict_dataset)
            )
            metrics["test_samples"] = min(max_predict_samples, len(predict_dataset))
            trainer.log_metrics(metric_key_prefix, metrics)
            trainer.save_metrics(metric_key_prefix, metrics)


if __name__ == "__main__":
    main()