File size: 7,835 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# run_clm.py
import logging
import os
import sys

import datasets
import transformers
from transformers import (
    Trainer,
    default_data_collator,
    is_torch_tpu_available,
    set_seed,
)
from transformers.trainer_callback import TrainerState
from transformers.utils import check_min_version
from transformers.utils.versions import require_version

from sdlm.run_pretrain import filter_by_length

from .arguments import get_args
from .data.data_utils import load_data, tokenize_data_new
from .models import load_model
from .utils import (
    get_last_checkpoint_with_beaker_preemption,
    is_nfs_available,
    is_weka_available,
    resolve_last_checkpoint_vs_resume_from_checkpoint,
    set_hf_home,
    set_pretraining_dataset,
)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.25.0")

require_version(
    "datasets>=2.0.0",
    "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt",
)

logger = logging.getLogger(__name__)

# set environment variables
set_hf_home()
os.environ["TOKENIZERS_PARALLELISM"] = "false"


def main():
    # parse args
    model_args, data_args, training_args, diffusion_args = get_args()
    set_pretraining_dataset(data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = get_last_checkpoint_with_beaker_preemption(training_args)

    # load model
    tokenizer, model = load_model(
        model_args, data_args, training_args, diffusion_args, logger
    )
    assert model.config.pad_token_id is not None

    # Set seed before initializing model.
    set_seed(training_args.seed)

    if training_args.do_train:
        raw_datasets = load_data(data_args, model_args)
        train_dataset = tokenize_data_new(
            data_args, tokenizer, raw_datasets, training_args
        )["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        if data_args.min_train_seq_length != 0:
            train_dataset = train_dataset.filter(
                filter_by_length(
                    data_args.min_train_seq_length, model.config.pad_token_id
                )
            )
        if data_args.shuffle and data_args.streaming:
            train_dataset = train_dataset.shuffle(
                seed=training_args.seed, buffer_size=10_000
            )
        elif data_args.shuffle:
            train_dataset = train_dataset.shuffle(seed=training_args.seed)

        # NOTE: modifications for clm
        train_dataset = train_dataset.map(
            lambda x: {**x, "labels": x["input_ids"]},
            remove_columns=["special_tokens_mask"],
        )

    if training_args.do_eval:
        # default to c4
        if is_weka_available():
            data_file_path = "/data/input/jaket/c4_subset"
        elif is_nfs_available():
            data_file_path = (
                "/net/nfs.cirrascale/allennlp/jaket/simplex-diffusion/c4_subset"
            )
        else:
            # yale
            data_file_path = "/home/jt856/documents/simplex-diffusion/raw/c4_subset"
        c4_raw_dataset = datasets.IterableDatasetDict(
            {
                "validation": datasets.load_dataset(
                    "json",
                    data_files=os.path.join(
                        data_file_path, "c4-validation.00000-of-00008.json"
                    ),
                )["train"]
            }
        )
        c4_tokenized_datasets = tokenize_data_new(
            data_args, tokenizer, c4_raw_dataset, training_args
        )
        eval_dataset = c4_tokenized_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        if data_args.min_eval_seq_length != 0:
            eval_dataset = eval_dataset.filter(
                filter_by_length(
                    data_args.min_eval_seq_length, model.config.pad_token_id
                ),
                num_proc=data_args.preprocessing_num_workers,
            )
        # NOTE: modifications for clm
        eval_dataset = eval_dataset.map(
            lambda x: {**x, "labels": x["input_ids"]},
            remove_columns=["special_tokens_mask"],
        )

        def preprocess_logits_for_metrics(logits, labels):
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
            return logits.argmax(dim=-1)

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
        compute_metrics=None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
    )

    # Training
    if training_args.do_train:
        checkpoint = resolve_last_checkpoint_vs_resume_from_checkpoint(
            last_checkpoint,
            training_args.resume_from_checkpoint,
        )
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload
        metrics = train_result.metrics

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        if training_args.load_states_in_eval_from_model_path:
            trainer._load_from_checkpoint(model_args.model_name_or_path)
            trainer.state = TrainerState.load_from_json(
                os.path.join(model_args.model_name_or_path, "trainer_state.json")
            )
            trainer._load_rng_state(model_args.model_name_or_path)

        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (
            data_args.max_eval_samples
            if data_args.max_eval_samples is not None
            else len(eval_dataset)
        )
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)


if __name__ == "__main__":
    main()