File size: 17,011 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""
Fine-tuning the library models for sequence to sequence.
"""

import logging
import os
import sys

import datasets
import evaluate
import transformers
from transformers import set_seed
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version

from .arguments import get_args
from .data.data_collator import DataCollatorForSeq2Seq
from .data.data_utils import load_data
from .data.postprocessors import postprocess_text_for_metric
from .inference.inference_utils import process_text
from .models import load_model
from .schedulers import TokenWiseSimplexDDPMScheduler
from .trainers.trainer_diffusion import DiffusionTrainer

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.25.0")
require_version("datasets>=1.8.0")
logger = logging.getLogger(__name__)

summarization_name_mapping = {
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
    "cnn_dailymail": ("article", "highlights"),
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
    "xsum": ("document", "summary"),
    "wiki_summary": ("article", "highlights"),
    "multi_news": ("document", "summary"),
}


def main():
    # parse args
    model_args, data_args, training_args, diffusion_args = get_args()
    assert (
        data_args.max_target_length + data_args.max_source_length
        <= data_args.max_seq_length
    )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if (
        os.path.isdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif (
            last_checkpoint is not None and training_args.resume_from_checkpoint is None
        ):
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # load data
    raw_datasets = load_data(data_args, model_args)

    # load model
    tokenizer, model = load_model(
        model_args, data_args, training_args, diffusion_args, logger
    )

    total_seq2seq_length = data_args.max_source_length + data_args.max_target_length
    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings < total_seq2seq_length
    ):
        if model_args.resize_position_embeddings is None:
            logger.warning(
                "Increasing the model's number of position embedding vectors from"
                f" {model.config.max_position_embeddings} to {total_seq2seq_length}."
            )
            # position_ids starts from `padding_idx + 1` (padding_index=1) and we therefore requires
            # 2 more position embeddings.
            model.resize_position_embeddings(
                total_seq2seq_length + 2,
                with_alternatation=model_args.resize_position_embeddings_alternatively,
            )
        elif model_args.resize_position_embeddings:
            model.resize_position_embeddings(
                total_seq2seq_length + 2,
                with_alternatation=model_args.resize_position_embeddings_alternatively,
            )
        else:
            raise ValueError(
                f"`max_source_length`+`max_target_length` is set to {total_seq2seq_length}, but the model only has"
                f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
                f" `max_source_length`+`max_target_length` to {model.config.max_position_embeddings} or to automatically resize the"
                " model's position encodings by passing `--resize_position_embeddings`."
            )

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
        )
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    assert dataset_columns is not None, "You need to provide the columns names."
    text_column, summary_column = dataset_columns[0], dataset_columns[1]

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length

    """
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )
    """

    def preprocess_function(examples):
        # remove pairs where at least one record is None

        inputs, targets = [], []
        for i in range(len(examples[text_column])):
            if examples[text_column][i] and examples[summary_column][i]:
                inputs.append(examples[text_column][i])
                targets.append(examples[summary_column][i])
        # TODO: we need to process first the target, then cut the inputs to the max_length-target length to use the
        # maximum number of tokens.
        model_inputs = tokenizer(
            inputs,
            max_length=data_args.max_source_length,
            padding=False,
            truncation=True,
        )
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(
            text_target=targets,
            max_length=max_target_length,
            padding=False,
            truncation=True,
        )
        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(
            desc="validation dataset map pre-processing"
        ):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )

    def preprocess_logits_for_metrics(logits):
        return logits.argmax(dim=-1)

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        test_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(test_dataset), data_args.max_predict_samples)
            test_dataset = test_dataset.select(range(max_predict_samples))
        with training_args.main_process_first(
            desc="prediction dataset map pre-processing"
        ):
            test_dataset = test_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    # TODO: we may want to add predict back.

    # Data collator. To be consistent with the run_mlm.py we need to add `mode`.
    data_collator = lambda mode: DataCollatorForSeq2Seq(  # noqa: E731
        tokenizer,
        # Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus.
        padding="max_length" if data_args.pad_to_max_length else True,
        max_length=data_args.max_seq_length,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )

    noise_scheduler = TokenWiseSimplexDDPMScheduler(
        num_train_timesteps=diffusion_args.num_diffusion_steps,
        beta_schedule=diffusion_args.beta_schedule,
        simplex_value=diffusion_args.simplex_value,
        clip_sample=diffusion_args.clip_sample,
        device=training_args.device,
        multiply_factor=diffusion_args.multiply_factor,
    )
    inference_noise_schedulers = [
        TokenWiseSimplexDDPMScheduler(
            num_train_timesteps=timesteps,
            beta_schedule=diffusion_args.beta_schedule,
            simplex_value=diffusion_args.simplex_value,
            clip_sample=diffusion_args.clip_sample,
            device=training_args.device,
            multiply_factor=diffusion_args.multiply_factor,
        )
        for timesteps in diffusion_args.num_inference_diffusion_steps
    ]

    # Metric
    metric = evaluate.load("rouge")

    def compute_metrics(results):
        keys = ["pred_texts_from_simplex_masked", "pred_texts_from_logits_masked"]
        metrics = {}
        for key in keys:
            decoded_preds = (
                process_text(results[key])
                if not data_args.skip_special_tokens
                else results[key]
            )
            # Note that since decoded_labels is getting updated after post-process, we
            # need to compute it here for each key.
            decoded_labels = (
                process_text(results["gold_texts_masked"])
                if not data_args.skip_special_tokens
                else results["gold_texts_masked"]
            )
            decoded_preds, decoded_labels = postprocess_text_for_metric(
                "rouge", decoded_preds, decoded_labels
            )
            key_metrics = metric.compute(
                predictions=decoded_preds, references=decoded_labels, use_stemmer=True
            )
            key_metrics = {k: round(v * 100, 4) for k, v in key_metrics.items()}
            key_metrics = {f"{key}_{k}": v for k, v in key_metrics.items()}
            metrics.update(key_metrics)
        return metrics

    # Initialize our Trainer
    trainer = DiffusionTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if (training_args.do_eval or training_args.do_predict)
        else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if (training_args.do_eval or training_args.do_predict)
        else None,
        noise_scheduler=noise_scheduler,
        diffusion_args=diffusion_args,
        data_args=data_args,
        inference_noise_schedulers=inference_noise_schedulers,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples
            if data_args.max_train_samples is not None
            else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # We will load the best model here to avoid an issue when do_train is not set.
    if training_args.load_states_in_eval_from_model_path and not training_args.do_train:
        trainer.state = TrainerState.load_from_json(
            os.path.join(model_args.model_name_or_path, "trainer_state.json")
        )
        if (
            training_args.load_best_model_at_end
            and trainer.state.best_model_checkpoint is not None
        ):
            checkpoint_path = trainer.state.best_model_checkpoint
        else:
            checkpoint_path = model_args.model_name_or_path
        trainer._load_from_checkpoint(checkpoint_path)
        trainer._load_rng_state(checkpoint_path)

    # Evaluation
    results = {}
    # max_length = (
    #     training_args.generation_max_length
    #     if training_args.generation_max_length is not None
    #     else data_args.val_max_target_length
    # )
    # num_beams = (
    #     data_args.num_beams
    #     if data_args.num_beams is not None
    #     else training_args.generation_num_beams
    # )
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        # TODO: num_beans should be added for ours as well.
        # metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
        metrics = trainer.evaluate()
        max_eval_samples = (
            data_args.max_eval_samples
            if data_args.max_eval_samples is not None
            else len(eval_dataset)
        )
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Test ***")
        metrics = trainer.evaluate(test_dataset, metric_key_prefix="test")
        max_predict_samples = (
            data_args.max_predict_samples
            if data_args.max_predict_samples is not None
            else len(test_dataset)
        )
        metrics["test_samples"] = min(max_predict_samples, len(test_dataset))
        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)

    # TODO: we may want to add predict part back.
    return results


if __name__ == "__main__":
    main()