Spaces:
Sleeping
Sleeping
File size: 9,415 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
""" Finetuning the library models for sequence classification on GLUE."""
import logging
import sys
import alpaca_eval
import datasets
import transformers
from datasets import load_dataset
from transformers import AutoTokenizer, set_seed
from .arguments import get_args
from .data.data_collator import DataCollatorForCausalMultiTurnSeq2Seq
from .data.data_utils import load_data
from .models import load_model
from .run_tulu import encode_with_messages_format_v1
from .trainers.trainer_ar import ARTrainer
from .utils import (
get_last_checkpoint_with_beaker_preemption,
resolve_last_checkpoint_vs_resume_from_checkpoint,
)
logger = logging.getLogger(__name__)
def main():
# parse args
model_args, data_args, training_args, diffusion_args = get_args()
assert data_args.dataset_name is not None
data_args.dataset_name = data_args.dataset_name.lower()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = get_last_checkpoint_with_beaker_preemption(training_args)
# load dataset
raw_datasets = load_data(data_args, model_args)
eval_dataset = load_dataset("tatsu-lab/alpaca_eval")["eval"]
# Set seed before initializing model.
set_seed(training_args.seed)
# load tokenizer early
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
padding_side=model_args.tokenizer_padding_side,
)
# load model
tokenizer, model = load_model(
model_args, data_args, training_args, diffusion_args, logger
)
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
train_column_names = raw_datasets["train"].column_names
# if training_args.do_eval:
# eval_column_names = eval_dataset.column_names
# Temporarily set max_target_length for training.
max_target_length = data_args.max_seq_length
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
# we assume the data is in the tulu format
train_dataset = train_dataset.map(
lambda x: encode_with_messages_format_v1(
x, tokenizer, max_target_length
),
batched=False,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=train_column_names,
desc="Running tokenizer on train dataset",
)
train_dataset.set_format("pt")
train_dataset = train_dataset.filter(lambda x: (x["labels"] != -100).any())
if training_args.do_eval:
logger.warn(
"Running evaluation. This calls GPT-4, so PLEASE MAKE SURE YOU ARE NOT RUNNING IT A TONNE"
)
max_target_length = data_args.max_seq_length
# put the dataset into the correct format
eval_dataset = eval_dataset.map(
lambda x: {"messages": [{"role": "user", "content": x["instruction"]}]}
)
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(
desc="validation dataset map pre-processing"
):
prompt_function = lambda x: encode_with_messages_format_v1( # noqa: E731
x, tokenizer, max_target_length, add_generation_prompt=True
)
# prompting
eval_dataset = eval_dataset.map(
prompt_function,
batched=False,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=[
"instruction",
"dataset",
"generator",
"messages",
"output",
],
desc="Running tokenizer on validation dataset",
)
eval_dataset.set_format("pt")
eval_dataset.remove_columns(["labels"])
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
# Metric
def compute_metrics(results):
metrics = {}
eval_data = [
tokenizer.decode(x, skip_special_tokens=True)
.replace("<|user|>\n", "")
.replace("<|assistant|>\n", "")
.strip()
for x in results.inputs
]
# assume we stopped at eos
decoded_preds = []
for prediction in results.predictions:
# sometimes we get out of range somehow?? guard against it.
prediction = [x for x in prediction if x > 0 and x < tokenizer.vocab_size]
decoded_preds.append(tokenizer.decode(prediction, skip_special_tokens=True))
# for each decoded sample, format into alpacaeval setup
decoded_preds = [
{"output": y, "instruction": x, "generator": "tess2"}
for x, y in zip(eval_data, decoded_preds)
]
df_leaderboard, _ = alpaca_eval.evaluate(
model_outputs=decoded_preds,
is_overwrite_leaderboard=True,
is_return_instead_of_print=True,
)
# grab tess2 results
key_metrics = df_leaderboard.loc["tess2"].to_dict()
metrics.update(key_metrics)
return metrics
# Data collator. To be consistent with the run_mlm.py we need to add `mode`.
data_collator = lambda mode: DataCollatorForCausalMultiTurnSeq2Seq( # noqa: E731
tokenizer,
# Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus.
padding="max_length" if data_args.pad_to_max_length else True,
max_length=data_args.max_seq_length,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Initialize our Trainer
trainer = ARTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics
if (training_args.do_eval or training_args.do_predict)
else None,
)
# Training
if training_args.do_train:
checkpoint = resolve_last_checkpoint_vs_resume_from_checkpoint(
last_checkpoint,
training_args.resume_from_checkpoint,
)
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if __name__ == "__main__":
main()
|