Spaces:
Sleeping
Sleeping
File size: 14,019 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""DDPM scheduler for the simplex diffusion model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from diffusers import DDPMScheduler
from diffusers.configuration_utils import register_to_config
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
from diffusers.utils import BaseOutput
@dataclass
class SimplexDDPMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
projected_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocab_size)`):
The projected logits sample (x_{0}) based on the model output from the current timestep.
"""
prev_sample: torch.FloatTensor
projected_logits: Optional[torch.FloatTensor] = None
def betas_for_alpha_bar(
num_diffusion_timesteps, device, max_beta=0.999, improved_ddpm=False
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def default_alpha_bar(time_step):
return math.cos((time_step + 1e-4) / (1 + 1e-4) * math.pi / 2) ** 2
if improved_ddpm:
# Implements eqn. 17 in https://arxiv.org/pdf/2102.09672.pdf.
alpha_bar = lambda x: ( # noqa: E731
default_alpha_bar(x) / default_alpha_bar(0.0)
)
alphas_cumprod = []
else:
alpha_bar = default_alpha_bar
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
alpha_bar_t1 = alpha_bar(t1)
betas.append(min(1 - alpha_bar(t2) / alpha_bar_t1, max_beta))
if improved_ddpm:
alphas_cumprod.append(alpha_bar_t1)
# TODO(rabeeh): maybe this cause memory issue.
betas = torch.tensor(betas, dtype=torch.float32, device=device)
if improved_ddpm:
return betas, torch.tensor(
alphas_cumprod, dtype=torch.torch.float32, device=device
)
return betas
class SimplexDDPMScheduler(DDPMScheduler):
@register_to_config
def __init__(
self,
device,
simplex_value: float,
num_train_timesteps: int = 1000,
num_inference_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
variance_type: str = "fixed_small",
clip_sample: bool = False,
):
if trained_betas is not None:
self.betas = torch.from_numpy(trained_betas)
elif beta_schedule == "linear":
self.betas = torch.linspace(
beta_start,
beta_end,
num_train_timesteps,
dtype=torch.float32,
device=device,
)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
device=device,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps, device=device)
elif beta_schedule == "squaredcos_improved_ddpm":
self.betas, self.alphas_cumprod = betas_for_alpha_bar(
num_train_timesteps, device=device, improved_ddpm=True
)
elif beta_schedule == "sigmoid":
# GeoDiff sigmoid schedule
betas = torch.linspace(-6, 6, num_train_timesteps, device=device)
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}"
)
if beta_schedule == "squaredcos_improved_ddpm":
self.alphas = None
else:
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.one = torch.tensor(1.0, device=device)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
# TODO(rabeeh): if memory issue, we can not add this to GPU and convert them iteratively.
self.timesteps = torch.from_numpy(
np.arange(0, num_train_timesteps)[::-1].copy()
).to(device=device)
self.variance_type = variance_type
def step(
self,
projected_logits: torch.FloatTensor,
timestep: int,
t_prev: int, # previous timestep. recall we are in backward process, so this is the next timestep.
noise: torch.FloatTensor,
generator=None,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
projected_logits (`torch.FloatTensor`): projected logits from the diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
noise (`torch.FloatTensor`): a random noise with simplex_value standard deviation.
generator: random number generator.
Returns:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] resulted values.
"""
t = timestep[0, 0].item()
# 1. compute alphas, betas
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
# 3. Clip "predicted x_0"
if self.config.clip_sample:
projected_logits = torch.clamp(projected_logits, -1, 1)
# See algorithm 2 in Figure 3 in https://arxiv.org/pdf/2210.17432.pdf.
predicted_logits_coeff = alpha_prod_t_prev ** (0.5)
noise_coeff = (1 - alpha_prod_t_prev) ** (0.5)
pred_prev_sample = (
predicted_logits_coeff * projected_logits + noise_coeff * noise
)
return SimplexDDPMSchedulerOutput(
prev_sample=pred_prev_sample, projected_logits=projected_logits
)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
timesteps = timesteps.long()
# if same shape, we have per-token timesteps
if timesteps.shape == noise.shape[:2]:
alphas_cumprod_timesteps = self.alphas_cumprod[timesteps][:, :, None]
else:
alphas_cumprod_timesteps = self.alphas_cumprod[timesteps].view(-1, 1, 1)
sqrt_alpha_prod = alphas_cumprod_timesteps**0.5
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod_timesteps) ** 0.5
noisy_samples = (
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
)
return noisy_samples
class TokenWiseSimplexDDPMScheduler(DDPMScheduler):
@register_to_config
def __init__(
self,
device,
simplex_value: float,
num_train_timesteps: int = 1000,
num_inference_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
variance_type: str = "fixed_small",
clip_sample: bool = False,
multiply_factor: float = 1.0,
):
if trained_betas is not None:
self.betas = torch.from_numpy(trained_betas)
elif beta_schedule == "linear":
self.betas = torch.linspace(
beta_start,
beta_end,
num_train_timesteps,
dtype=torch.float32,
device=device,
)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
device=device,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps, device=device)
elif beta_schedule == "squaredcos_improved_ddpm":
self.betas, self.alphas_cumprod = betas_for_alpha_bar(
num_train_timesteps, device=device, improved_ddpm=True
)
elif beta_schedule == "sigmoid":
# GeoDiff sigmoid schedule
betas = torch.linspace(-6, 6, num_train_timesteps, device=device)
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}"
)
if beta_schedule == "squaredcos_improved_ddpm":
self.alphas = None
else:
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.one = torch.tensor(1.0, device=device)
self.alphas_cumprod = multiply_factor * self.alphas_cumprod
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
# TODO(rabeeh): if memory issue, we can not add this to GPU and convert them iteratively.
self.timesteps = torch.from_numpy(
np.arange(0, num_train_timesteps)[::-1].copy()
).to(device=device)
self.variance_type = variance_type
def step(
self,
projected_logits: torch.FloatTensor,
timestep: int,
t_prev: int, # previous timestep. recall we are in backward process, so this is the next timestep.
noise: torch.FloatTensor,
generator=None,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
projected_logits (`torch.FloatTensor`): projected logits from the diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
noise (`torch.FloatTensor`): a random noise with simplex_value standard deviation.
generator: random number generator.
Returns:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] resulted values.
"""
position_timestep = timestep.long()
# 1. compute alphas, betas
# index into alphas cumprod
alphas_cumprods = []
for i, pos_timestep in enumerate(position_timestep):
alphas_cumprods.append(
torch.where(pos_timestep > 0, self.alphas_cumprod[t_prev[i]], self.one)
)
# alphas_cumprods has dim: [batch, positions, timesteps]
alpha_prod_t_prev = torch.stack(alphas_cumprods, dim=0)[:, :, None]
# current_timesteps = current_timesteps.unsqueeze(-1)
# now, we can use gather!
# alpha_prod_t_prev = torch.where(current_timesteps > 0, alphas_cumprods.gather(dim=-1, index=current_timesteps.long()), self.one)
# alpha_prod_t_prev = self.alphas_cumprod[position_timestep][t - 1] if t > 0 else self.one
# alpha_prod_t_prev = alpha_prod_t_prev
# 3. Clip "predicted x_0"
if self.config.clip_sample:
projected_logits = torch.clamp(projected_logits, -1, 1)
# See algorithm 2 in Figure 3 in https://arxiv.org/pdf/2210.17432.pdf.
predicted_logits_coeff = alpha_prod_t_prev ** (0.5)
noise_coeff = (1 - alpha_prod_t_prev) ** (0.5)
pred_prev_sample = (
predicted_logits_coeff * projected_logits + noise_coeff * noise
)
return SimplexDDPMSchedulerOutput(
prev_sample=pred_prev_sample, projected_logits=projected_logits
)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# if same shape, we have per-token timesteps
if timesteps.shape == noise.shape[:2]:
alphas_cumprod_timesteps = self.alphas_cumprod[timesteps.long()][:, :, None]
else:
alphas_cumprod_timesteps = self.alphas_cumprod[timesteps.long()].view(
-1, 1, 1
)
sqrt_alpha_prod = alphas_cumprod_timesteps**0.5
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod_timesteps) ** 0.5
noisy_samples = (
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
)
return noisy_samples
|