Spaces:
Sleeping
Sleeping
File size: 16,981 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python examples/scripts/reward_modeling.py \
--model_name_or_path=facebook/opt-350m \
--output_dir="reward_modeling_anthropic_hh" \
--per_device_train_batch_size=16 \
--num_train_epochs=1 \
--gradient_accumulation_steps=2 \
--gradient_checkpointing=True \
--learning_rate=1.41e-5 \
--report_to="wandb" \
--remove_unused_columns=False \
--optim="adamw_torch" \
--logging_steps=10 \
--eval_strategy="steps" \
--eval_steps=500 \
--max_length=512 \
"""
import warnings
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.optim.lr_scheduler import LambdaLR
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser, PreTrainedModel
from transformers.trainer_pt_utils import nested_detach
from trl import ModelConfig, RewardConfig, RewardTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
from sdlm.models.mistral.modeling_mistral import MistralforSequenceClassificationWithPadding
from sdlm.models.utils import get_torch_dtype
from sdlm.schedulers import SimplexDDPMScheduler
tqdm.pandas()
# TODO: allow end_lr to be changed via some config.
def _get_linear_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, end_lr_ratio: float = 0.1):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
else:
return end_lr_ratio + (1.0 - end_lr_ratio) * max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, end_lr_ratio, last_epoch=-1):
lr_lambda = partial(
_get_linear_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
end_lr_ratio=end_lr_ratio,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
# new little trainer with the scheduler we want.
class RewardTrainerScheduler(RewardTrainer):
def __init__(self, *args, train_on_noisy_inputs=False, **kwargs):
super().__init__(*args, **kwargs)
self.train_on_noisy_inputs = train_on_noisy_inputs
self.noise_scheduler = SimplexDDPMScheduler(
num_train_timesteps=5000,
beta_schedule="squaredcos_improved_ddpm",
simplex_value=5,
clip_sample=False,
device='cuda',
)
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
if self.lr_scheduler is None:
self.lr_scheduler = get_linear_schedule_with_warmup(optimizer, self.args.warmup_steps, num_training_steps, end_lr_ratio=0.1)
self._created_lr_scheduler = True
return self.lr_scheduler
def prediction_step(
self,
model: Union[PreTrainedModel, nn.Module],
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
inputs = self._prepare_inputs(inputs)
if ignore_keys is None:
if hasattr(self.model, "config"):
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
else:
ignore_keys = []
with torch.no_grad():
loss, logits_dict = self.compute_loss(model, inputs, return_outputs=True)
if prediction_loss_only:
return (loss, None, None)
loss = loss.detach()
logits = tuple(v for k, v in logits_dict.items() if k not in ignore_keys)
logits = nested_detach(logits)
# Stack accepted against rejected, mean over logits
# and softmax to get preferences between accepted and rejected to sum to 1
# logits = torch.stack(logits).mean(dim=2).softmax(dim=0).T
# removing softmax for now, since I want to see the raw logits.
logits = torch.stack(logits).mean(dim=2).T
labels = torch.zeros(logits.shape[0])
labels = self._prepare_inputs(labels)
return loss, logits, labels
# hacky override to set cache to false
# required to fix FA2 + mistral issues
# see https://github.com/huggingface/trl/issues/1217
def compute_loss(
self,
model,
inputs,
return_outputs=False,
):
if not self.use_reward_data_collator:
warnings.warn(
"The current compute_loss is implemented for RewardDataCollatorWithPadding,"
" if you are using a custom data collator make sure you know what you are doing or"
" implement your own compute_loss method."
)
if self.train_on_noisy_inputs:
from sdlm.utils import convert_to_simplex
def construct_noisy_simplex(input_ids):
# hardcoded simplex value for now TODO: make this a config
simplex = convert_to_simplex(
input_ids, 5, len(self.tokenizer)
)
noise = 5 * torch.randn(
simplex.shape, device=simplex.device, dtype=torch.float32
)
bsz = simplex.shape[0]
timesteps = torch.randint(
0,
5000, # hardcoded value for now TODO: make this a config
(bsz, input_ids.shape[1])
if False # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
timesteps = timesteps[:, None].expand(-1, input_ids.shape[1])
# Adds noise to each simplex representation (Forward diffusion process).
noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
return noisy_simplex.detach() # detach to avoid backpropagating through the noise
simplex_chosen = construct_noisy_simplex(inputs["input_ids_chosen"])
simplex_chosen = torch.softmax(simplex_chosen, dim=-1).to(torch.bfloat16)
# unwrap model for FSDP, to compute input embeddings
with FSDP.summon_full_params(model):
embedding_weight = model.get_input_embeddings().weight.data
inputs_embeds_chosen = F.linear(
simplex_chosen, model.get_input_embeddings().weight.data.T
)
simplex_rejected = construct_noisy_simplex(inputs["input_ids_rejected"])
simplex_rejected = torch.softmax(simplex_rejected, dim=-1).to(torch.bfloat16)
inputs_embeds_rejected = F.linear(
simplex_rejected, model.get_input_embeddings().weight.data.T
)
rewards_chosen = model(
inputs_embeds=inputs_embeds_chosen,
attention_mask=inputs["attention_mask_chosen"],
return_dict=True,
use_cache=False,
)["logits"]
rewards_rejected = model(
inputs_embeds=inputs_embeds_rejected,
attention_mask=inputs["attention_mask_rejected"],
return_dict=True,
use_cache=False,
)["logits"]
else:
rewards_chosen = model(
input_ids=inputs["input_ids_chosen"],
attention_mask=inputs["attention_mask_chosen"],
return_dict=True,
use_cache=False,
)["logits"]
rewards_rejected = model(
input_ids=inputs["input_ids_rejected"],
attention_mask=inputs["attention_mask_rejected"],
return_dict=True,
use_cache=False,
)["logits"]
# calculate loss, optionally modulate with margin
if "margin" in inputs:
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean()
else:
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()
if return_outputs:
return loss, {
"rewards_chosen": rewards_chosen,
"rewards_rejected": rewards_rejected,
}
return loss
@dataclass
class RewardModelingArguments:
include_padding: bool = False # if true, we pad the input_ids to the max_length and compute reward at final token.
use_tulu_chat_template: bool = False # if true, we use the tulu chat template for the input_ids.
end_lr: float = 1e-6 # final learning rate for the learning rate scheduler.
dataset_name: str = "argilla/ultrafeedback-binarized-preferences-cleaned" # dataset to use for reward modeling.
use_flash_attention2: bool = False # if true, we use the flash attention2 implementation.
eval_only: bool = False # if true, we only evaluate the model.
train_on_noisy_inputs: bool = False # if true, we emulate the diffusion noise as input during training.
if __name__ == "__main__":
parser = HfArgumentParser((RewardConfig, ModelConfig, RewardModelingArguments))
config, model_config, reward_config = parser.parse_args_into_dataclasses()
config.gradient_checkpointing_kwargs = dict(use_reentrant=False)
################
# Model & Tokenizer
################
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
attn_implementation="flash_attention_2"
if reward_config.use_flash_attention2
else "eager",
torch_dtype=get_torch_dtype(config),
)
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, revision=model_config.model_revision, use_fast=True)
# just always add the pad token.
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# make sure the pad token is set correctly.
tokenizer.pad_token = "[PAD]"
tokenizer.pad_token_id = 32000
if reward_config.use_tulu_chat_template:
tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
if reward_config.include_padding:
model = MistralforSequenceClassificationWithPadding.from_pretrained(
model_config.model_name_or_path, num_labels=1, **model_kwargs
)
else:
model = AutoModelForSequenceClassification.from_pretrained(
model_config.model_name_or_path, num_labels=1, **model_kwargs
)
# resize model embeddings
vocab_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > vocab_size:
model.resize_token_embeddings(len(tokenizer))
# make sure the model knows the pad token id
model.config.pad_token_id = tokenizer.pad_token_id
tokenizer.padding_side = "right"
if model_config.lora_task_type != "SEQ_CLS":
warnings.warn(
"You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs"
" Make sure to pass --lora_task_type SEQ_CLS when using this script."
)
# Dataset loading
raw_datasets = load_dataset(reward_config.dataset_name)
# use reward bench for validation.
eval_dataset = load_dataset("allenai/reward-bench", split="filtered")
# Tokenize chosen/rejected pairs of inputs
# Adapt this section to your needs for custom datasets
def preprocess_function(examples):
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
# flatten from 2d to 1d
tokenize_func = lambda x: tokenizer.apply_chat_template(
x,
return_tensors="pt",
max_length=config.max_length,
padding=reward_config.include_padding,
).flatten()
tokenized_chosen = tokenize_func(chosen)
tokenized_rejected = tokenize_func(rejected)
new_examples["input_ids_chosen"].append(tokenized_chosen)
new_examples["attention_mask_chosen"].append(torch.ones_like(tokenized_chosen))
new_examples["input_ids_rejected"].append(tokenized_rejected)
new_examples["attention_mask_rejected"].append(torch.ones_like(tokenized_rejected))
return new_examples
def preprocess_function_no_list(examples):
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for prompt, chosen, rejected in zip(examples["prompt"], examples["chosen"], examples["rejected"]):
# construct lists
chosen = [{"role": "user", "content": prompt}, {"role": "assistant", "content": chosen}]
rejected = [{"role": "user", "content": prompt}, {"role": "assistant", "content": rejected}]
# same as above
tokenize_func = lambda x: tokenizer.apply_chat_template(
x,
return_tensors="pt",
max_length=config.max_length,
padding=reward_config.include_padding,
).flatten()
tokenized_chosen = tokenize_func(chosen)
tokenized_rejected = tokenize_func(rejected)
new_examples["input_ids_chosen"].append(tokenized_chosen)
new_examples["attention_mask_chosen"].append(torch.ones_like(tokenized_chosen))
new_examples["input_ids_rejected"].append(tokenized_rejected)
new_examples["attention_mask_rejected"].append(torch.ones_like(tokenized_rejected))
return new_examples
# Preprocess the dataset and filter out examples that are longer than args.max_length
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
num_proc=4,
)
raw_datasets = raw_datasets.filter(
lambda x: len(x["input_ids_chosen"]) <= config.max_length and len(x["input_ids_rejected"]) <= config.max_length
)
train_dataset = raw_datasets["train"]
eval_dataset = eval_dataset.map(preprocess_function_no_list, batched=True, num_proc=4)
eval_dataset = eval_dataset.filter(
lambda x: len(x["input_ids_chosen"]) <= config.max_length and len(x["input_ids_rejected"]) <= config.max_length
)
################
# Training
################
trainer = RewardTrainerScheduler(
model=model,
tokenizer=tokenizer,
args=config,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=get_peft_config(model_config),
train_on_noisy_inputs=reward_config.train_on_noisy_inputs,
)
if not reward_config.eval_only:
trainer.train()
trainer.save_model(config.output_dir)
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
print(metrics)
|