File size: 16,981 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python examples/scripts/reward_modeling.py \
    --model_name_or_path=facebook/opt-350m \
    --output_dir="reward_modeling_anthropic_hh" \
    --per_device_train_batch_size=16 \
    --num_train_epochs=1 \
    --gradient_accumulation_steps=2 \
    --gradient_checkpointing=True \
    --learning_rate=1.41e-5 \
    --report_to="wandb" \
    --remove_unused_columns=False \
    --optim="adamw_torch" \
    --logging_steps=10 \
    --eval_strategy="steps" \
    --eval_steps=500 \
    --max_length=512 \
"""
import warnings
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.optim.lr_scheduler import LambdaLR
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser, PreTrainedModel
from transformers.trainer_pt_utils import nested_detach

from trl import ModelConfig, RewardConfig, RewardTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
from sdlm.models.mistral.modeling_mistral import MistralforSequenceClassificationWithPadding
from sdlm.models.utils import get_torch_dtype
from sdlm.schedulers import SimplexDDPMScheduler

tqdm.pandas()

# TODO: allow end_lr to be changed via some config.
def _get_linear_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, end_lr_ratio: float = 0.1):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    else:
        return end_lr_ratio + (1.0 - end_lr_ratio) * max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))

def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, end_lr_ratio, last_epoch=-1):
    lr_lambda = partial(
        _get_linear_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        end_lr_ratio=end_lr_ratio,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


# new little trainer with the scheduler we want.
class RewardTrainerScheduler(RewardTrainer):
    def __init__(self, *args, train_on_noisy_inputs=False, **kwargs):
        super().__init__(*args, **kwargs)
        self.train_on_noisy_inputs = train_on_noisy_inputs
        self.noise_scheduler = SimplexDDPMScheduler(
        num_train_timesteps=5000,
        beta_schedule="squaredcos_improved_ddpm",
        simplex_value=5,
        clip_sample=False,
        device='cuda',
    )


    def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
        if self.lr_scheduler is None:
            self.lr_scheduler = get_linear_schedule_with_warmup(optimizer, self.args.warmup_steps, num_training_steps, end_lr_ratio=0.1)
            self._created_lr_scheduler = True
        return self.lr_scheduler


    def prediction_step(
        self,
        model: Union[PreTrainedModel, nn.Module],
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
        inputs = self._prepare_inputs(inputs)
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []

        with torch.no_grad():
            loss, logits_dict = self.compute_loss(model, inputs, return_outputs=True)

        if prediction_loss_only:
            return (loss, None, None)

        loss = loss.detach()
        logits = tuple(v for k, v in logits_dict.items() if k not in ignore_keys)
        logits = nested_detach(logits)
        # Stack accepted against rejected, mean over logits
        # and softmax to get preferences between accepted and rejected to sum to 1
        # logits = torch.stack(logits).mean(dim=2).softmax(dim=0).T
        # removing softmax for now, since I want to see the raw logits.
        logits = torch.stack(logits).mean(dim=2).T

        labels = torch.zeros(logits.shape[0])
        labels = self._prepare_inputs(labels)

        return loss, logits, labels


    # hacky override to set cache to false
    # required to fix FA2 + mistral issues
    # see https://github.com/huggingface/trl/issues/1217
    def compute_loss(
            self,
            model,
            inputs,
            return_outputs=False,
        ):
            if not self.use_reward_data_collator:
                warnings.warn(
                    "The current compute_loss is implemented for RewardDataCollatorWithPadding,"
                    " if you are using a custom data collator make sure you know what you are doing or"
                    " implement your own compute_loss method."
                )
            if self.train_on_noisy_inputs:
                from sdlm.utils import convert_to_simplex
                def construct_noisy_simplex(input_ids):
                    # hardcoded simplex value for now TODO: make this a config
                    simplex = convert_to_simplex(
                        input_ids, 5, len(self.tokenizer)
                    )
                    noise = 5 * torch.randn(
                        simplex.shape, device=simplex.device, dtype=torch.float32
                    )
                    bsz = simplex.shape[0]
                    timesteps = torch.randint(
                        0,
                        5000,  # hardcoded value for now TODO: make this a config
                        (bsz, input_ids.shape[1])
                        if False  # is_tokenwise_cdcd_check(self.model)
                        else (bsz,),
                        device=simplex.device,
                        dtype=torch.int64,
                    )
                    timesteps = timesteps[:, None].expand(-1, input_ids.shape[1])
                    # Adds noise to each simplex representation (Forward diffusion process).
                    noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
                    return noisy_simplex.detach()  # detach to avoid backpropagating through the noise
                
                simplex_chosen = construct_noisy_simplex(inputs["input_ids_chosen"])
                simplex_chosen = torch.softmax(simplex_chosen, dim=-1).to(torch.bfloat16)
                # unwrap model for FSDP, to compute input embeddings
                with FSDP.summon_full_params(model):
                    embedding_weight = model.get_input_embeddings().weight.data
                    inputs_embeds_chosen = F.linear(
                        simplex_chosen, model.get_input_embeddings().weight.data.T
                    )
                    simplex_rejected = construct_noisy_simplex(inputs["input_ids_rejected"])
                    simplex_rejected = torch.softmax(simplex_rejected, dim=-1).to(torch.bfloat16)
                    inputs_embeds_rejected = F.linear(
                        simplex_rejected, model.get_input_embeddings().weight.data.T
                    )   
                rewards_chosen = model(
                    inputs_embeds=inputs_embeds_chosen,
                    attention_mask=inputs["attention_mask_chosen"],
                    return_dict=True,
                    use_cache=False,
                )["logits"]
                rewards_rejected = model(
                    inputs_embeds=inputs_embeds_rejected,
                    attention_mask=inputs["attention_mask_rejected"],
                    return_dict=True,
                    use_cache=False,
                )["logits"]
            else:
                rewards_chosen = model(
                    input_ids=inputs["input_ids_chosen"],
                    attention_mask=inputs["attention_mask_chosen"],
                    return_dict=True,
                    use_cache=False,
                )["logits"]
                rewards_rejected = model(
                    input_ids=inputs["input_ids_rejected"],
                    attention_mask=inputs["attention_mask_rejected"],
                    return_dict=True,
                    use_cache=False,
                )["logits"]
            # calculate loss, optionally modulate with margin
            if "margin" in inputs:
                loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean()
            else:
                loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()

            if return_outputs:
                return loss, {
                    "rewards_chosen": rewards_chosen,
                    "rewards_rejected": rewards_rejected,
                }
            return loss

@dataclass
class RewardModelingArguments:
    include_padding: bool = False  # if true, we pad the input_ids to the max_length and compute reward at final token.
    use_tulu_chat_template: bool = False  # if true, we use the tulu chat template for the input_ids.
    end_lr: float = 1e-6  # final learning rate for the learning rate scheduler.
    dataset_name: str = "argilla/ultrafeedback-binarized-preferences-cleaned"  # dataset to use for reward modeling.
    use_flash_attention2: bool = False  # if true, we use the flash attention2 implementation.
    eval_only: bool = False  # if true, we only evaluate the model.
    train_on_noisy_inputs: bool = False  # if true, we emulate the diffusion noise as input during training.

if __name__ == "__main__":
    parser = HfArgumentParser((RewardConfig, ModelConfig, RewardModelingArguments))
    config, model_config, reward_config = parser.parse_args_into_dataclasses()
    config.gradient_checkpointing_kwargs = dict(use_reentrant=False)

    ################
    # Model & Tokenizer
    ################
    torch_dtype = (
        model_config.torch_dtype
        if model_config.torch_dtype in ["auto", None]
        else getattr(torch, model_config.torch_dtype)
    )
    quantization_config = get_quantization_config(model_config)
    model_kwargs = dict(
        revision=model_config.model_revision,
        trust_remote_code=model_config.trust_remote_code,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
        attn_implementation="flash_attention_2"
            if reward_config.use_flash_attention2
            else "eager",
        torch_dtype=get_torch_dtype(config),
    )
    tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, revision=model_config.model_revision, use_fast=True)
    # just always add the pad token.
    tokenizer.add_special_tokens({"pad_token": "[PAD]"})
    # make sure the pad token is set correctly.
    tokenizer.pad_token = "[PAD]"
    tokenizer.pad_token_id = 32000

    if reward_config.use_tulu_chat_template:
        tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n'  + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
    if reward_config.include_padding:
        model = MistralforSequenceClassificationWithPadding.from_pretrained(
            model_config.model_name_or_path, num_labels=1, **model_kwargs
        )
    else:
        model = AutoModelForSequenceClassification.from_pretrained(
            model_config.model_name_or_path, num_labels=1, **model_kwargs
        )

    # resize model embeddings
    vocab_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > vocab_size:
        model.resize_token_embeddings(len(tokenizer))

    # make sure the model knows the pad token id
    model.config.pad_token_id = tokenizer.pad_token_id
    tokenizer.padding_side = "right"

    if model_config.lora_task_type != "SEQ_CLS":
        warnings.warn(
            "You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs"
            " Make sure to pass --lora_task_type SEQ_CLS when using this script."
        )

    # Dataset loading
    raw_datasets = load_dataset(reward_config.dataset_name)
    # use reward bench for validation.
    eval_dataset = load_dataset("allenai/reward-bench", split="filtered")
    # Tokenize chosen/rejected pairs of inputs
    # Adapt this section to your needs for custom datasets

    def preprocess_function(examples):
        new_examples = {
            "input_ids_chosen": [],
            "attention_mask_chosen": [],
            "input_ids_rejected": [],
            "attention_mask_rejected": [],
        }
        for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
            # flatten from 2d to 1d
            tokenize_func = lambda x: tokenizer.apply_chat_template(
                x,
                return_tensors="pt",
                max_length=config.max_length,
                padding=reward_config.include_padding,
            ).flatten()
            tokenized_chosen = tokenize_func(chosen)
            tokenized_rejected = tokenize_func(rejected)
            new_examples["input_ids_chosen"].append(tokenized_chosen)
            new_examples["attention_mask_chosen"].append(torch.ones_like(tokenized_chosen))
            new_examples["input_ids_rejected"].append(tokenized_rejected)
            new_examples["attention_mask_rejected"].append(torch.ones_like(tokenized_rejected))
        return new_examples
    
    def preprocess_function_no_list(examples):
        new_examples = {
            "input_ids_chosen": [],
            "attention_mask_chosen": [],
            "input_ids_rejected": [],
            "attention_mask_rejected": [],
        }
        for prompt, chosen, rejected in zip(examples["prompt"], examples["chosen"], examples["rejected"]):
            # construct lists
            chosen = [{"role": "user", "content": prompt}, {"role": "assistant", "content": chosen}]
            rejected = [{"role": "user", "content": prompt}, {"role": "assistant", "content": rejected}]
            # same as above
            tokenize_func = lambda x: tokenizer.apply_chat_template(
                x,
                return_tensors="pt",
                max_length=config.max_length,
                padding=reward_config.include_padding,
            ).flatten()
            tokenized_chosen = tokenize_func(chosen)
            tokenized_rejected = tokenize_func(rejected)
            new_examples["input_ids_chosen"].append(tokenized_chosen)
            new_examples["attention_mask_chosen"].append(torch.ones_like(tokenized_chosen))
            new_examples["input_ids_rejected"].append(tokenized_rejected)
            new_examples["attention_mask_rejected"].append(torch.ones_like(tokenized_rejected))

        return new_examples

    # Preprocess the dataset and filter out examples that are longer than args.max_length
    raw_datasets = raw_datasets.map(
        preprocess_function,
        batched=True,
        num_proc=4,
    )
    raw_datasets = raw_datasets.filter(
        lambda x: len(x["input_ids_chosen"]) <= config.max_length and len(x["input_ids_rejected"]) <= config.max_length
    )
    train_dataset = raw_datasets["train"]
    eval_dataset = eval_dataset.map(preprocess_function_no_list, batched=True, num_proc=4)
    eval_dataset = eval_dataset.filter(
        lambda x: len(x["input_ids_chosen"]) <= config.max_length and len(x["input_ids_rejected"]) <= config.max_length
    )

    ################
    # Training
    ################
    trainer = RewardTrainerScheduler(
        model=model,
        tokenizer=tokenizer,
        args=config,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        peft_config=get_peft_config(model_config),
        train_on_noisy_inputs=reward_config.train_on_noisy_inputs,
    )
    if not reward_config.eval_only:
        trainer.train()
        trainer.save_model(config.output_dir)
    metrics = trainer.evaluate()
    trainer.log_metrics("eval", metrics)
    print(metrics)