Spaces:
Sleeping
Sleeping
File size: 47,082 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
import math
import time
import warnings
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader, Dataset
from transformers import Trainer
with warnings.catch_warnings():
warnings.simplefilter(action="ignore", category=FutureWarning)
from transformers.deepspeed import deepspeed_init
from transformers.integrations import TensorBoardCallback
from transformers.trainer_pt_utils import (
IterableDatasetShard,
find_batch_size,
nested_concat,
nested_detach,
nested_numpify,
)
from transformers.trainer_utils import denumpify_detensorize, has_length, speed_metrics
from transformers.utils import (
is_apex_available,
is_datasets_available,
is_sagemaker_mp_enabled,
logging,
)
from sdlm.inference.inference_utils import (
logits_projection,
predict_conditional_generated,
)
from sdlm.models.utils import is_cdcd_check
from sdlm.pipelines.simplex_ddpm import SimplexDDPMClassifierGuidancePipeline
from sdlm.utils import convert_to_simplex, pad_data, scale, self_condition_preds
if is_apex_available():
from apex import amp
if is_datasets_available():
import datasets
GENERATION_RESULTS = "generated"
logger = logging.get_logger(__name__)
class EvalLoopOutput(NamedTuple):
logits: Union[np.ndarray, Tuple[np.ndarray]]
simplex: Union[np.ndarray, Tuple[np.ndarray]]
input_ids: Optional[Union[np.ndarray, Tuple[np.ndarray]]]
metrics: Optional[Dict[str, float]]
results: Optional[Dict[str, List[str]]]
num_samples: Optional[int]
class DiffusionTrainer(Trainer):
def __init__(
self,
noise_scheduler,
inference_noise_schedulers,
diffusion_args,
data_args,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.original_data_collator = self.data_collator
self.noise_scheduler = noise_scheduler
self.diffusion_args = diffusion_args
self.data_args = data_args
self.vocab_size = self.model.config.vocab_size
self.inference_noise_schedulers = inference_noise_schedulers
self.inference_timesteps = diffusion_args.num_inference_diffusion_steps
self.tb_writer = self.get_tb_writer()
self.eos_token_id = self.tokenizer.eos_token_id
self.classifier_free_guidance = (
diffusion_args.guidance_scale > 1.0
and data_args.conditional_generation is not None
)
self.counter = 0
# TODO: control seed.
self.self_cond_generator = np.random.default_rng(42)
def annotated_split(self, split):
return f"{split}_top_p_{self.diffusion_args.top_p}_temperature_{self.diffusion_args.temperature}_seed_{self.args.seed}_guidance_scale_{self.diffusion_args.guidance_scale}"
def save_metrics(self, split, metrics, combined=True):
super().save_metrics(self.annotated_split(split), metrics, combined)
def log_metrics(self, split, metrics):
super().log_metrics(self.annotated_split(split), metrics)
def get_tb_writer(self):
for cb in self.callback_handler.callbacks:
if isinstance(cb, TensorBoardCallback):
return cb
return None
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to train.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
Return:
`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
# Creates the noisy simplex and timesteps.
simplex = convert_to_simplex(
inputs["input_ids"], self.diffusion_args.simplex_value, self.vocab_size
)
noise = self.diffusion_args.simplex_value * torch.randn(
simplex.shape, device=simplex.device, dtype=simplex.dtype
)
bsz = simplex.shape[0]
# Sample a random timestep for each simplex token representation.
# testing just sampling the same place. This better matches reality.
if True: # np.random.rand(1) > 0.5:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if False # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
timesteps = timesteps[:, None].expand(-1, inputs["input_ids"].shape[1])
else:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if True # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
# expand out timesteps to match tokenwise setup
# if True: # not is_tokenwise_cdcd_check(self.model):
# timesteps = timesteps[:, None].expand(-1, inputs["input_ids"].shape[1])
# save original timesteps for warping
original_timesteps = timesteps
# warp timesteps according to cdf
# we re-scale the timesteps to the correct range.
# the -1 is due to the timestep should be in range [0, 5000)
if is_cdcd_check(self.model):
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1, self.tokenizer.pad_token_id, input_ids
)
timesteps = self.model.warp_timesteps(
timesteps,
token_input=token_input,
span_mask=span_mask,
t_max=len(self.noise_scheduler) - 1,
)
# Adds noise to each simplex representation (Forward diffusion process).
noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
# the warper model will scale the timesteps to the correct range.
timesteps = scale(timesteps, len(self.noise_scheduler))
# original_timesteps_scaled = scale(original_timesteps, len(self.noise_scheduler))
# inputs.update(
# {"original_timesteps": scale(original_timesteps, len(self.noise_scheduler))}
# )
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
# inputs.update({"max_timestep": len(self.noise_scheduler)})
if self.diffusion_args.self_condition is not None:
previous_pred = None
# previous_hidden = None
if self.self_cond_generator.random(1) > 0.5:
next_timestep = inputs.pop("timesteps")
next_simplex = inputs.pop("simplex")
timesteps = torch.clamp(
(next_timestep * len(self.noise_scheduler)) + 1,
max=len(self.noise_scheduler) - 1,
)
if is_cdcd_check(self.model):
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1,
self.tokenizer.pad_token_id,
input_ids,
)
timesteps = self.model.warp_timesteps(
timesteps,
token_input=token_input,
span_mask=span_mask,
t_max=len(self.noise_scheduler) - 1,
)
noisy_simplex = self.noise_scheduler.add_noise(
simplex, noise, timesteps
)
timesteps = scale(timesteps, len(self.noise_scheduler))
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
# we don't backprop through this.
with torch.no_grad():
outputs = model(**inputs, previous_pred=previous_pred)
logits_projection_fct = lambda x: logits_projection( # noqa: E731
x,
self.diffusion_args.sampling_type,
self.diffusion_args.top_p,
self.diffusion_args.simplex_value,
self.diffusion_args.temperature,
)
previous_pred = self_condition_preds(
self.diffusion_args.self_condition,
outputs.logits,
logits_projection_fct,
).detach()
# following rest of self-conditioning, don't backprop through.
# previous_hidden = outputs.hidden_states.detach()
# pop timestep/simplex and put the old ones back.
inputs.update(
{
"timesteps": next_timestep,
"simplex": next_simplex,
}
)
inputs.update({"previous_pred": previous_pred})
# inputs.update({"previous_hidden": previous_hidden})
else:
inputs.update({"previous_pred": None})
# inputs.update({"previous_hidden": None})
# previous_hidden = None
# NOTE: we do this after computation of self-conditioning to not affect that one.
# inputs.update(
# {"classifier_free_guidance_in_train": self.classifier_free_guidance}
# )
# re-warp based on previous hidden state
if is_cdcd_check(self.model):
# replace masked tokens with <mask> token.
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1, self.tokenizer.pad_token_id, input_ids
)
timesteps = self.model.warp_timesteps(
original_timesteps,
t_max=len(self.noise_scheduler) - 1,
token_input=token_input,
span_mask=span_mask,
)
noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
timesteps = scale(timesteps, len(self.noise_scheduler))
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
# HACK: transformer update
# if self.do_grad_scaling:
# self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss)
return loss.detach() / self.args.gradient_accumulation_steps
def light_prediction_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
with torch.no_grad():
inputs = self._prepare_inputs(inputs)
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
# Creates the noisy simplex and timesteps.
simplex = convert_to_simplex(
inputs["input_ids"], self.diffusion_args.simplex_value, self.vocab_size
)
noise = self.diffusion_args.simplex_value * torch.randn(
simplex.shape, device=simplex.device, dtype=simplex.dtype
)
bsz = simplex.shape[0]
# Sample a random timestep for each simplex token representation.
# we use the train timesteps to be consistent with the training process.
# randomly flip between random batchwise and tokenwise timesteps.
if True:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if False # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
timesteps = timesteps[:, None].expand(-1, inputs["input_ids"].shape[1])
else:
timesteps = torch.randint(
0,
len(self.noise_scheduler),
(bsz, inputs["input_ids"].shape[1])
if True # is_tokenwise_cdcd_check(self.model)
else (bsz,),
device=simplex.device,
dtype=torch.int64,
)
# original_timesteps = timesteps
# if cdcd, we need to wrap the timesteps in a cdf.
# make sure we scale the timesteps to the correct range!
if is_cdcd_check(self.model):
input_ids = inputs["input_ids"]
span_mask = inputs["span_mask"]
token_input = torch.where(
(input_ids * span_mask) > 1, self.tokenizer.pad_token_id, input_ids
)
timesteps = self.model.warp_timesteps(
timesteps,
t_max=len(self.noise_scheduler) - 1,
token_input=token_input,
span_mask=span_mask,
)
# Adds noise to each simplex representation (Forward diffusion process).
noisy_simplex = self.noise_scheduler.add_noise(simplex, noise, timesteps)
timesteps = scale(timesteps, len(self.noise_scheduler))
# original_timesteps_scaled = scale(
# original_timesteps, len(self.noise_scheduler)
# )
# inputs.update({"original_timesteps": original_timesteps_scaled})
inputs.update(
{
"timesteps": timesteps,
"simplex": noisy_simplex,
}
)
# inputs.update({"max_timestep": len(self.noise_scheduler)})
if self.diffusion_args.self_condition is not None:
previous_pred = None
# last_hidden_state = None
if np.random.rand(1) > 0.5:
outputs = model(**inputs, previous_pred=previous_pred)
logits_projection_fct = lambda x: logits_projection( # noqa: E731
x,
self.diffusion_args.sampling_type,
self.diffusion_args.top_p,
self.diffusion_args.simplex_value,
self.diffusion_args.temperature,
)
previous_pred = self_condition_preds(
self.diffusion_args.self_condition,
outputs.logits,
logits_projection_fct,
)
# last_hidden_state = outputs.hidden_states
inputs.update(
{
"previous_pred": previous_pred,
# "previous_hidden": last_hidden_state,
}
)
# NOTE: we do this after computation of self-conditioning to not affect that one.
# inputs.update(
# {"classifier_free_guidance_in_train": self.classifier_free_guidance}
# )
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
return (
loss.detach()
) # no division by gradient accumulation steps for eval. we want per-sample avg loss.
# TODO: argument for doing one step.
def prediction_step(
self,
inputs: Dict[str, Union[torch.Tensor, Any]],
model: nn.Module,
pipeline: List[SimplexDDPMClassifierGuidancePipeline],
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
inputs = self._prepare_inputs(inputs)
# full inference.
with torch.no_grad():
with self.compute_loss_context_manager():
for i, x in enumerate(
pipeline(
seq_length=self.data_args.max_seq_length
- self.data_args.truncation_length,
batch=inputs,
guidance_scale=self.diffusion_args.guidance_scale,
generator=torch.Generator(device=self.args.device).manual_seed(
self.args.seed
)
if self.diffusion_args.generate_with_seed
else None,
is_generator=False,
use_gumbel_softmax=self.diffusion_args.use_gumbel_softmax,
do_hard_sample=self.diffusion_args.do_hard_sample,
softmax_temperature=self.diffusion_args.softmax_temperature,
num_guidance_steps=self.diffusion_args.num_guidance_steps,
)
):
outputs = x
logits = nested_detach(outputs.logits)
simplex = nested_detach(outputs.simplex)
return (simplex, logits)
def evaluation_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
noise_scheduler=None,
light_eval_dataloader=None,
do_light_eval=False,
) -> EvalLoopOutput:
"""
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
Works both with or without labels.
"""
args = self.args
is_conditional_generation = self.data_args.conditional_generation is not None
save_prefixes = is_conditional_generation
prediction_loss_only = (
prediction_loss_only
if prediction_loss_only is not None
else args.prediction_loss_only
)
# if eval is called w/o train handle model prep here
if self.is_deepspeed_enabled and self.model_wrapped is self.model:
_, _ = deepspeed_init(self, num_training_steps=0, inference=True)
model = self._wrap_model(self.model, training=False, dataloader=dataloader)
if len(self.accelerator._models) == 0 and model is self.model:
model = (
self.accelerator.prepare(model)
if self.is_deepspeed_enabled
else self.accelerator.prepare_model(model, evaluation_mode=True)
)
if self.is_fsdp_enabled:
self.model = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# backward compatibility
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
# while ``train`` is running, cast it to the right dtype first and then put on device
if not self.is_in_train:
if args.fp16_full_eval:
model = model.to(dtype=torch.float16, device=args.device)
elif args.bf16_full_eval:
model = model.to(dtype=torch.bfloat16, device=args.device)
batch_size = self.args.eval_batch_size
logger.info(f"***** Running {description} *****")
if has_length(dataloader):
logger.info(f" Num examples = {self.num_examples(dataloader)}")
else:
logger.info(" Num examples: Unknown")
logger.info(f" Batch size = {batch_size}")
model.eval()
pipeline = SimplexDDPMClassifierGuidancePipeline(
model=model,
scheduler=noise_scheduler,
simplex_value=self.diffusion_args.simplex_value,
top_p=self.diffusion_args.top_p,
sampling_type=self.diffusion_args.sampling_type,
is_conditional_generation=is_conditional_generation,
tokenizer=self.tokenizer,
classifier_free_uncond_input=self.diffusion_args.classifier_free_uncond_input,
temperature=self.diffusion_args.temperature,
guidance_softmax_combination=self.diffusion_args.guidance_softmax_combination,
classifier_model_name_or_path=self.diffusion_args.classifier_model_name_or_path,
)
self.callback_handler.eval_dataloader = dataloader
# Do this before wrapping.
eval_dataset = getattr(dataloader, "dataset", None)
# Initialize containers
# logits/simplex/labels on GPU/TPU (accumulated for eval_accumulation_steps)
losses_host = None
logits_host = None
simplex_host = None
inputs_host = None
masks_host = None
prefixes_host = None
# logits/simplex/labels on CPU (final containers)
all_losses = None
all_logits = None
all_simplex = None
all_inputs = None
all_masks = None
all_prefixes = None
observed_num_examples = 0
# light evaluation loop.
if light_eval_dataloader is not None and do_light_eval:
for step, inputs in enumerate(light_eval_dataloader):
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
max_seq_length = (
self.data_args.max_seq_length - self.data_args.truncation_length
)
assert self.data_args.eval_context_size < max_seq_length
# predict loss mimicking training.
loss = self.light_prediction_step(model, inputs)
if loss is not None:
losses = self._nested_gather(loss.repeat(batch_size))
losses_host = (
losses
if losses_host is None
else torch.cat((losses_host, losses), dim=0)
)
if (
args.eval_accumulation_steps is not None
and (step + 1) % args.eval_accumulation_steps == 0
):
if losses_host is not None:
losses = nested_numpify(losses_host)
all_losses = (
losses
if all_losses is None
else np.concatenate((all_losses, losses), axis=0)
)
losses_host = None
# Main evaluation loop
for step, inputs in enumerate(dataloader):
has_mask = True if "span_mask" in inputs else False
# Truncate the length if needed.
if self.data_args.truncation_length > 0:
inputs["input_ids"] = inputs["input_ids"][
:, : -self.data_args.truncation_length
]
inputs["span_mask"] = inputs["span_mask"][
:, : -self.data_args.truncation_length
]
max_seq_length = (
self.data_args.max_seq_length - self.data_args.truncation_length
)
assert self.data_args.eval_context_size < max_seq_length
# Update the observed num examples
observed_batch_size = find_batch_size(inputs)
if observed_batch_size is not None:
observed_num_examples += observed_batch_size
# For batch samplers, batch_size is not known by the dataloader in advance.
if batch_size is None:
batch_size = observed_batch_size
# Prediction step
simplex, logits = self.prediction_step(inputs, model, pipeline=pipeline)
inputs_decode = self._prepare_input(inputs["input_ids"])
masks = self._prepare_input(inputs["span_mask"]) if has_mask else None
if save_prefixes:
prefixes = (
pad_data(
[input[~mask] for input, mask in zip(inputs_decode, masks)],
self.tokenizer,
)
if has_mask
else None
)
prefixes = self._prepare_input(prefixes)
else:
prefixes = None
# Update containers on host
if prefixes is not None:
prefixes = self.accelerator.pad_across_processes(
prefixes, dim=1, pad_index=self.eos_token_id
)
prefixes = self._nested_gather(prefixes)
prefixes_host = (
prefixes
if prefixes_host is None
else nested_concat(
prefixes_host, prefixes, padding_index=self.eos_token_id
)
)
if inputs_decode is not None:
inputs_decode = self.accelerator.pad_across_processes(
inputs_decode, dim=1, pad_index=self.eos_token_id
)
inputs_decode = self._nested_gather(inputs_decode)
inputs_host = (
inputs_decode
if inputs_host is None
else nested_concat(
inputs_host, inputs_decode, padding_index=self.eos_token_id
)
)
# Note that this block should be before masks block, since we need masks here.
if simplex is not None:
# In case of having a mask softmax is applied over the simplex non-masked values.
if has_mask:
mask_value = torch.finfo(simplex.dtype).min
mask_value = torch.tensor(
mask_value, dtype=simplex.dtype, device=simplex.device
)
simplex = torch.where(masks[:, :, None], simplex, mask_value)
simplex = F.softmax(simplex, dim=-1)
if self.preprocess_logits_for_metrics is not None:
simplex = self.preprocess_logits_for_metrics(simplex)
simplex = self.accelerator.pad_across_processes(
simplex, dim=1, pad_index=self.eos_token_id
)
simplex = self._nested_gather(simplex)
# TODO: note that this is no more a simplex, but the processed one.
simplex_host = (
simplex
if simplex_host is None
else nested_concat(
simplex_host, simplex, padding_index=self.eos_token_id
)
)
if masks is not None:
masks = self.accelerator.pad_across_processes(masks, dim=1, pad_index=0)
masks = self._nested_gather(masks)
# We pad masks with False tokens.
masks_host = (
masks
if masks_host is None
else nested_concat(masks_host, masks, padding_index=0)
)
if logits is not None:
if self.preprocess_logits_for_metrics is not None:
logits = self.preprocess_logits_for_metrics(logits)
logits = self.accelerator.pad_across_processes(
logits, dim=1, pad_index=self.eos_token_id
)
logits = self._nested_gather(logits)
logits_host = (
logits
if logits_host is None
else nested_concat(
logits_host, logits, padding_index=self.eos_token_id
)
)
self.control = self.callback_handler.on_prediction_step(
args, self.state, self.control
)
# Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
if (
args.eval_accumulation_steps is not None
and (step + 1) % args.eval_accumulation_steps == 0
):
if logits_host is not None:
logits = nested_numpify(logits_host)
all_logits = (
logits
if all_logits is None
else nested_concat(
all_logits, logits, padding_index=self.eos_token_id
)
)
if simplex_host is not None:
simplex = nested_numpify(simplex_host)
all_simplex = (
simplex
if all_simplex is None
else nested_concat(
all_simplex, simplex, padding_index=self.eos_token_id
)
)
if inputs_host is not None:
inputs_decode = nested_numpify(inputs_host)
all_inputs = (
inputs_decode
if all_inputs is None
else nested_concat(
all_inputs, inputs_decode, padding_index=self.eos_token_id
)
)
if masks_host is not None:
masks = nested_numpify(masks_host)
all_masks = (
masks
if all_masks is None
else nested_concat(all_masks, masks, padding_index=0)
)
if prefixes_host is not None:
prefixes = nested_numpify(prefixes_host)
all_prefixes = (
prefixes
if all_prefixes is None
else nested_concat(
all_prefixes, prefixes, padding_index=self.eos_token_id
)
)
# Set back to None to begin a new accumulation
logits_host, simplex_host, inputs_host, masks_host, prefixes_host = (
None,
None,
None,
None,
None,
)
# Gather all remaining tensors and put them back on the CPU
if losses_host is not None:
all_losses = nested_numpify(losses_host)
if logits_host is not None:
all_logits = nested_numpify(logits_host)
if simplex_host is not None:
all_simplex = nested_numpify(simplex_host)
if inputs_host is not None:
all_inputs = nested_numpify(inputs_host)
if masks_host is not None:
all_masks = nested_numpify(masks_host)
if prefixes_host is not None:
all_prefixes = nested_numpify(prefixes_host)
if args.past_index and hasattr(self, "_past"):
# Clean the state at the end of the evaluation loop
delattr(self, "_past")
# Number of samples
if has_length(eval_dataset):
num_samples = len(eval_dataset)
# The instance check is weird and does not actually check for the type, but whether the dataset has the right
# methods. Therefore we need to make sure it also has the attribute.
elif (
isinstance(eval_dataset, IterableDatasetShard)
and getattr(eval_dataset, "num_examples", 0) > 0
):
num_samples = eval_dataset.num_examples
else:
if has_length(dataloader):
num_samples = self.num_examples(dataloader)
else: # both len(dataloader.dataset) and len(dataloader) fail
num_samples = observed_num_examples
if num_samples == 0 and observed_num_examples > 0:
num_samples = observed_num_examples
# Generates the texts.
results = {}
if is_conditional_generation:
# We predict the masked tokens only. Here, we compute the masked tokens.
results.update(
predict_conditional_generated(
all_masks,
all_inputs,
self.tokenizer,
all_simplex,
"pred_texts_from_simplex",
self.data_args.skip_special_tokens,
)
)
results.update(
predict_conditional_generated(
all_masks,
all_inputs,
self.tokenizer,
all_logits,
"pred_texts_from_logits",
self.data_args.skip_special_tokens,
)
)
else:
results.update(
{
"pred_texts_from_simplex": self.tokenizer.batch_decode(
all_simplex,
skip_special_tokens=self.data_args.skip_special_tokens,
)
}
)
results.update(
{
"pred_texts_from_logits": self.tokenizer.batch_decode(
all_logits,
skip_special_tokens=self.data_args.skip_special_tokens,
)
}
)
if is_conditional_generation:
results.update(
{
"gold_texts_masked": [
self.tokenizer.decode(
input[mask],
skip_special_tokens=self.data_args.skip_special_tokens,
)
for mask, input in zip(all_masks, all_inputs)
]
}
)
if save_prefixes:
results.update(
{
"prefixes": [
self.tokenizer.decode(
x, skip_special_tokens=True
) # self.data_args.skip_special_tokens)
for x in all_prefixes
]
}
)
# Metrics.
if self.compute_metrics is not None:
metrics = self.compute_metrics(results)
else:
metrics = {}
# To be JSON-serializable, we need to remove numpy types or zero-d tensors
metrics = denumpify_detensorize(metrics)
if all_losses is not None:
metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return EvalLoopOutput(
logits=all_logits,
simplex=all_simplex,
input_ids=all_inputs,
metrics=metrics,
num_samples=num_samples,
results=results,
)
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> Dict[str, float]:
"""
Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
(pass it to the init `compute_metrics` argument).
You can also subclass and override this method to inject custom behavior.
Args:
eval_dataset (`Dataset`, *optional*):
Pass a dataset if you wish to override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
method.
ignore_keys (`Lst[str]`, *optional*):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
"eval_bleu" if the prefix is "eval" (default)
Returns:
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
dictionary also contains the epoch number which comes from the training state.
"""
# memory metrics - must set up as early as possible
self._memory_tracker.start()
eval_dataloader = self.get_eval_dataloader(eval_dataset)
light_eval_dataloader = self.get_light_eval_dataloader(eval_dataset)
start_time = time.time()
outputs = []
timesteps = self.inference_timesteps
for timestep, noise_scheduler in zip(
timesteps, self.inference_noise_schedulers
):
output = self.evaluation_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if self.compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
noise_scheduler=noise_scheduler,
light_eval_dataloader=light_eval_dataloader,
do_light_eval=timestep
== timesteps[
0
], # we only need the loss once, since it is the same for all timesteps
)
outputs.append(output)
key_prefix = f"inference_{timestep}_"
metrics = {key_prefix + k: v for k, v in output.metrics.items()}
results = {key_prefix + k: v for k, v in output.results.items()}
# reset output with new metrics / results
output = EvalLoopOutput(
logits=output.logits,
simplex=output.simplex,
input_ids=output.input_ids,
metrics=metrics,
num_samples=output.num_samples,
results=results,
)
total_batch_size = self.args.eval_batch_size * self.args.world_size
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
self.log(output.metrics)
self.control = self.callback_handler.on_evaluate(
self.args, self.state, self.control, output.metrics
)
self._memory_tracker.stop_and_update_metrics(output.metrics)
# Save the results
self.save_metrics(
GENERATION_RESULTS + "_" + key_prefix + metric_key_prefix,
output.results,
)
logger.info("Results are saved now")
# log outside so we can group generations together
if self.args.log_generated_texts:
length = len(outputs[0].logits)
results = {
f"{k}_inference_{i}": v
for o, i in zip(outputs, timesteps)
for k, v in o.results.items()
}
self.log_results_to_tensorboard(self.state, length, results)
return output.metrics
def log_results_to_tensorboard(self, state, length, results):
# TODO: we need to fix this which happens during the only eval option.
if self.tb_writer.tb_writer is None:
return
for i in range(length):
total_text = ""
for k, v in results.items():
total_text += f"*** {k} ***: {v[i]}" + " \n"
self.tb_writer.tb_writer.add_text(
f"sample_{i}", total_text, state.global_step
)
def get_train_dataloader(self) -> DataLoader:
self.data_collator = self.original_data_collator("train")
return super().get_train_dataloader()
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
self.data_collator = self.original_data_collator("eval")
return super().get_eval_dataloader(eval_dataset)
def get_light_eval_dataloader(
self, eval_dataset: Optional[Dataset] = None
) -> DataLoader:
"""
Returns the evaluation [`~torch.utils.data.DataLoader`].
Used for the light evaluation, which matches masking with training.
Args:
eval_dataset (`torch.utils.data.Dataset`, *optional*):
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
by the `model.forward()` method are automatically removed. It must implement `__len__`.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
data_collator = self.original_data_collator("train")
if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
eval_dataset = self._remove_unused_columns(
eval_dataset, description="evaluation"
)
else:
data_collator = self._get_collator_with_removed_columns(
data_collator, description="evaluation"
)
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
return self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params))
def create_optimizer(self):
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if self.optimizer is not None:
return self.optimizer
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(
self.args
)
# override to apply higher lr to timestep_embed and cdcd cdf
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n in decay_parameters
and p.requires_grad
and not ("timestep_embed" in n or "cdf" in n)
)
],
"weight_decay": self.args.weight_decay,
"lr": optimizer_kwargs["lr"],
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n not in decay_parameters
and p.requires_grad
and not ("timestep_embed" in n or "cdf" in n)
)
],
"weight_decay": 0.0,
"lr": optimizer_kwargs["lr"],
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (("timestep_embed" in n) and p.requires_grad)
],
"weight_decay": 0.0,
"lr": self.args.timestep_embed_lr or self.args.learning_rate,
},
]
# check cdcd
cdf_params = [
p
for n, p in opt_model.named_parameters()
if (("cdf" in n) and p.requires_grad)
]
if cdf_params:
optimizer_grouped_parameters.append(
{
"params": cdf_params,
"weight_decay": 0.0,
"lr": 1e-3,
}
)
optimizer_kwargs.pop("lr")
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
return self.optimizer
|