Spaces:
Sleeping
Sleeping
File size: 12,044 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
"""Defines the utilities used during the training/infernece of diffusion language models."""
import os
from typing import Callable, Iterable, List
from collections import defaultdict
import torch
import torch.nn.functional as F
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import logging
logger = logging.get_logger(__name__)
def join_texts(prefixes, sentences):
"""Joins prefixes to setences."""
return [f"{prefix}{sentence}" for prefix, sentence in zip(prefixes, sentences)]
def convert_to_simplex(token_ids, simplex_value, vocab_size):
return 2 * simplex_value * F.one_hot(token_ids, vocab_size) - simplex_value
def scale(inputs, scale_value):
return inputs / scale_value
def tokenwise_timestep(position, timestep, max_length, max_timesteps):
n_e, t_e = 2 * max_length, max_timesteps
n_s = min(max(max_length - timestep, 0), max_length)
t_s = min(max(timestep - max_length, 0), max_timesteps)
token_timestep = ((t_e - t_s) / (n_e - n_s)) * (position - n_s) + t_s
return round(min(max(0, token_timestep), max_timesteps))
def self_condition_preds(self_condition, logits, logits_projection=None):
if self_condition in [
"logits",
"logits_addition",
"logits_mean",
"logits_max",
"logits_multiply",
]:
previous_pred = logits.detach()
elif self_condition in [
"logits_with_projection",
"logits_with_projection_addition",
]:
previous_pred = logits_projection(logits.detach())
else:
assert NotImplementedError(f"{self_condition} is not implemented.")
return previous_pred
def mix_values_based_on_self_condition(self_condition_type, value_1, value_2):
if self_condition_type in ["logits_with_projection_addition", "logits_addition"]:
mixed_values = value_1 + value_2
elif self_condition_type == "logits_mean":
mixed_values = (value_1 + value_2) / 2.0
elif self_condition_type == "logits_max":
mixed_values = torch.max(value_1, value_2)
elif self_condition_type == "logits_multiply":
mixed_values = value_1 * value_2
else:
assert NotImplementedError
return mixed_values
def lmap(f: Callable, x: Iterable) -> List:
"""list(map(f, x))"""
return list(map(f, x))
def pad_data(data_list, tokenizer):
return tokenizer.pad({"input_ids": data_list}, padding=True)["input_ids"]
# from the open-instruct codebase.
# NOTE: this is only used for eval and ar training
def encode_with_messages_format_v1(
example, tokenizer, max_seq_length, return_string=False, add_generation_prompt=False
):
"""
Here we assume each example has a 'messages' field Each message is a dict with 'role' and 'content' fields.
We concatenate all messages with the roles as delimiters and tokenize them together.
"""
# filter (open orca)
messages = [
message
for message in example["messages"]
if message["role"] in {"user", "assistant"}
]
# we only take the first two messages, since multi-turn is a little more complex
messages = messages[:2]
if len(messages) == 0:
raise ValueError("messages field is empty.")
# quick sanity checks
assert messages[0]["role"] == "user"
def _concat_messages(messages):
message_text = ""
for message in messages:
if message["role"] == "user":
message_text += "<|user|>\n" + message["content"].strip() + "\n"
elif message["role"] == "assistant":
message_text += (
"<|assistant|>\n"
+ message["content"].strip()
+ tokenizer.eos_token
+ "\n"
)
else:
raise ValueError("Invalid role: {}".format(message["role"]))
return message_text
example_text = tokenizer.bos_token + _concat_messages(messages).strip()
if add_generation_prompt:
example_text += "\n<|assistant|>\n"
if return_string:
return example_text
tokenized_example = tokenizer(
example_text,
add_special_tokens=False,
return_tensors="pt",
max_length=max_seq_length,
truncation=True,
)
input_ids = tokenized_example.input_ids
labels = input_ids.clone()
# mask the non-assistant part for avoiding loss
for message_idx, message in enumerate(messages):
if message["role"] != "assistant":
if message_idx == 0:
message_start_idx = 0
else:
message_start_idx = tokenizer(
_concat_messages(messages[:message_idx]),
return_tensors="pt",
max_length=max_seq_length,
truncation=True,
).input_ids.shape[1]
if (
message_idx < len(messages) - 1
and messages[message_idx + 1]["role"] == "assistant"
):
# here we also ignore the role of the assistant
messages_so_far = (
_concat_messages(messages[: message_idx + 1]) + "<|assistant|>\n"
)
else:
messages_so_far = _concat_messages(messages[: message_idx + 1])
message_end_idx = tokenizer(
messages_so_far,
return_tensors="pt",
max_length=max_seq_length,
truncation=True,
add_special_tokens=False,
).input_ids.shape[1]
# we replace with pad token id,
labels[:, message_start_idx:message_end_idx] = -100
if message_end_idx >= max_seq_length:
break
attention_mask = torch.ones_like(input_ids)
return {
"input_ids": input_ids.flatten(),
"labels": labels.flatten(),
"attention_mask": attention_mask.flatten(),
}
# fixes some newline issues in v1
# NOTE: this is only used for training
def encode_with_messages_format_v2(
messages,
tokenizer,
max_seq_length: int,
):
"""
`encode_with_messages_format`, but with prefix-accumulating multiturn format
ex) input_ids: (a1, b1, a2, b2, a3), labels: (b3)
"""
# quick sanity checks
if len(messages) == 0:
raise ValueError("messages field is empty.")
assert messages[0]["role"] == "user"
assert messages[1]["role"] == "assistant"
# double check tokenizer config
assert tokenizer.add_bos_token
assert not tokenizer.add_eos_token
assert tokenizer.padding_side == "right"
message_text = tokenizer.bos_token
result = defaultdict(list)
for message in messages:
if message["role"] == "user":
message_text += "<|user|>\n" + message["content"].strip() + "\n"
elif message["role"] == "assistant":
# tokenize message so far as context
# add generation prompt to mask out from loss
tokenized_context = tokenizer(
message_text + "<|assistant|>\n",
truncation=False,
padding=False,
add_special_tokens=False,
)
context_length = len(tokenized_context["input_ids"])
if context_length >= max_seq_length:
break
# append label
message_text += "<|assistant|>\n" + message["content"].strip()
# tokenize full message text
# add eos and pad
tokenized_example = tokenizer(
(message_text + tokenizer.eos_token).strip(),
truncation=True,
padding="max_length",
max_length=max_seq_length,
return_tensors="pt",
add_special_tokens=False,
)
input_ids = tokenized_example["input_ids"].squeeze()
labels = input_ids.clone()
labels[:context_length] = -100
result["input_ids"].append(input_ids)
result["labels"].append(labels)
# add newline for next turn
message_text += "\n"
if not result:
return result
result["input_ids"] = torch.stack(result["input_ids"])
result["labels"] = torch.stack(result["labels"])
return result
# batched version of encode_with_messages_format_v2
def encode_with_messages_format_v2_batch(
batch,
tokenizer,
max_seq_length: int,
is_tulu_pair: bool = False,
is_tulu_multiturn: bool = False,
is_tulu_sliding_window_multiturn: bool = False,
):
result = {"input_ids": [], "labels": []}
def _helper(messages):
encoded = encode_with_messages_format_v2(
messages=messages,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
)
for key, value in encoded.items():
result[key].append(value)
for messages in batch["messages"]:
# filter (open orca)
messages = [
message for message in messages if message["role"] in {"user", "assistant"}
]
if is_tulu_multiturn:
_helper(messages)
elif is_tulu_sliding_window_multiturn:
for i in range(0, len(messages) - 1, 2):
_helper(messages[i:])
else:
max_message_idx = len(messages) - 1 if is_tulu_pair else 2
for i in range(0, max_message_idx, 2):
_helper(messages[i : i + 2])
if result["input_ids"]:
result["input_ids"] = torch.cat(result["input_ids"], dim=0)
result["labels"] = torch.cat(result["labels"], dim=0)
return result
def get_last_checkpoint_with_beaker_preemption(training_args) -> str:
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if (
last_checkpoint is None
and len(os.listdir(training_args.output_dir)) > 0
and not training_args.beaker
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
return last_checkpoint
def resolve_last_checkpoint_vs_resume_from_checkpoint(
last_checkpoint, resume_from_checkpoint
):
"""
Prioritizes last_checkpoint over resume_from_checkpoint.
When a job configured with `resume_from_checkpoint` is preempted and restarted,
it needs to start from the last checkpoint in the beaker dataset, not the checkpoint
specified via `resume_from_checkpoint`; otherwise we lose all progress made in the previous job.
"""
checkpoint = None
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif resume_from_checkpoint is not None:
checkpoint = resume_from_checkpoint
return checkpoint
def is_weka_available() -> bool:
# assume mount path is /data/input
# jupiter
return os.path.isdir("/data/input")
def is_nfs_available() -> bool:
# allennlp, a100, pluto
return os.path.isdir("/net/nfs.cirrascale")
def set_hf_home() -> None:
if is_weka_available():
os.environ["HF_HOME"] = "/data/input/jaket/.hf"
elif is_nfs_available():
os.environ["HF_HOME"] = "/net/nfs.cirrascale/allennlp/jaket/.hf"
def set_pretraining_dataset(data_args) -> None:
if is_weka_available():
data_args.dataset_name = "sdlm/data/dolma/dolma_dataset.py"
else:
data_args.dataset_name = "emozilla/dolma-v1_7-305B"
|