hamishivi's picture
commit
17ff0d8 verified
import re
import string
import numpy as np
### Code ported from Huggingface's `evaluate` library at
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py
### which is under the apache license.
### Port taken from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/api/metrics.py used
### to fix the issue: https://github.com/EleutherAI/lm-evaluation-harness/pull/2045
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def exact_match_hf_evaluate(
predictions,
references,
regexes_to_ignore=None,
ignore_case=False,
ignore_punctuation=False,
ignore_numbers=False,
):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
predictions = np.array([re.sub(s, "", x) for x in predictions])
references = np.array([re.sub(s, "", x) for x in references])
else:
predictions = np.asarray(predictions)
references = np.asarray(references)
if ignore_case:
predictions = np.char.lower(predictions)
references = np.char.lower(references)
if ignore_punctuation:
repl_table = string.punctuation.maketrans("", "", string.punctuation)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
if ignore_numbers:
repl_table = string.digits.maketrans("", "", string.digits)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
score_list = predictions == references
return {"exact_match": np.mean(score_list)}