Spaces:
Sleeping
Sleeping
import re | |
import string | |
import numpy as np | |
### Code ported from Huggingface's `evaluate` library at | |
### https://github.com/huggingface/evaluate/blob/main/metrics/exact_match/exact_match.py | |
### which is under the apache license. | |
### Port taken from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/api/metrics.py used | |
### to fix the issue: https://github.com/EleutherAI/lm-evaluation-harness/pull/2045 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
def exact_match_hf_evaluate( | |
predictions, | |
references, | |
regexes_to_ignore=None, | |
ignore_case=False, | |
ignore_punctuation=False, | |
ignore_numbers=False, | |
): | |
if regexes_to_ignore is not None: | |
for s in regexes_to_ignore: | |
predictions = np.array([re.sub(s, "", x) for x in predictions]) | |
references = np.array([re.sub(s, "", x) for x in references]) | |
else: | |
predictions = np.asarray(predictions) | |
references = np.asarray(references) | |
if ignore_case: | |
predictions = np.char.lower(predictions) | |
references = np.char.lower(references) | |
if ignore_punctuation: | |
repl_table = string.punctuation.maketrans("", "", string.punctuation) | |
predictions = np.char.translate(predictions, table=repl_table) | |
references = np.char.translate(references, table=repl_table) | |
if ignore_numbers: | |
repl_table = string.digits.maketrans("", "", string.digits) | |
predictions = np.char.translate(predictions, table=repl_table) | |
references = np.char.translate(references, table=repl_table) | |
score_list = predictions == references | |
return {"exact_match": np.mean(score_list)} |