tess-2-demo / sdlm /run_sni_ar.py
hamishivi's picture
commit
17ff0d8 verified
""" Finetuning the library models for sequence classification on GLUE."""
import logging
import os
import random
import sys
import datasets
import transformers
from datasets import load_dataset
from transformers import AutoTokenizer, set_seed
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from .arguments import get_args
from .data.data_collator import DataCollatorForCausalLMSeq2Seq
from .data.data_utils import split_glue
from .data.postprocessors import postprocess_text_for_metric
from .data.sni.sni_collator import DataCollatorForNI
from .metrics.metrics import get_glue_metrics
from .models import load_model
from .trainers.trainer_ar import ARTrainer
# This is computed with scripts/compute_max_tokens_of_labels.py
MAX_LABEL_LENGTH = 5
check_min_version("4.25.0")
require_version("datasets>=1.8.0")
task_to_keys = {
# "cola": ("sentence", None),
# "mnli": ("premise", "hypothesis"),
# "mrpc": ("sentence1", "sentence2"),
# "qnli": ("question", "sentence"),
# "qqp": ("question1", "question2"),
# "rte": ("sentence1", "sentence2"),
# "sst2": ("sentence", None),
# "stsb": ("sentence1", "sentence2"),
# "wnli": ("sentence1", "sentence2"),
"sni": ("inputs", None),
}
task_to_metric = {
# "cola": "matthews_correlation",
# "mnli": "accuracy",
# "mrpc": "combined_score",
# "qnli": "accuracy",
# "qqp": "combined_score",
# "rte": "accuracy",
# "sst2": "accuracy",
# "stsb": "combined_score",
# "wnli": "accuracy",
"sni": "rouge",
}
logger = logging.getLogger(__name__)
def main():
# parse args
model_args, data_args, training_args, diffusion_args = get_args()
assert data_args.dataset_name is not None
data_args.dataset_name = data_args.dataset_name.lower()
if data_args.dataset_name not in task_to_keys.keys():
raise ValueError(
"Unknown task, you should pick one in " + ",".join(task_to_keys.keys())
)
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_glue", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# load tokenizer early
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
padding_side=model_args.tokenizer_padding_side,
)
# Downloading and loading a dataset from the hub.
if data_args.dataset_name == "sni":
raw_datasets = load_dataset(
"sdlm/data/sni/sni_dataset.py",
cache_dir=model_args.cache_dir,
trust_remote_code=True,
use_auth_token=True if model_args.use_auth_token else None,
)
# sni has validation / test
raw_datasets["validation"] = raw_datasets["test"]
# map into simple (inputs, labels) format
# makes easy to explore few-shot formats if we want.
collator = DataCollatorForNI(
tokenizer,
text_only=True,
num_pos_examples=0,
max_source_length=data_args.max_source_length,
max_target_length=data_args.max_target_length,
)
raw_datasets = raw_datasets.map(
collator,
batched=False,
num_proc=12, # lazy hardcode
# load_from_cache_file=False,
)
else:
raw_datasets = load_dataset(
"glue",
data_args.dataset_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# Split dataset, since test sets of GLUE do not have the labels.
if data_args.split_glue:
raw_datasets = split_glue(
raw_datasets, data_args.dataset_name, data_args.glue_split_seed
)
elif data_args.dataset_name == "mnli":
raw_datasets["validation"] = raw_datasets[
"validation_matched"
] # mismatched is for reverse, and for normal is matched.
raw_datasets["test"] = raw_datasets["test_matched"]
# shuffle our datasets with the split_seed (split glue does this but otherwise not.)
raw_datasets = raw_datasets.shuffle(data_args.glue_split_seed)
# load model
tokenizer, model = load_model(
model_args, data_args, training_args, diffusion_args, logger
)
# Preprocessing the raw_datasets
sentence1_key, sentence2_key = task_to_keys[data_args.dataset_name]
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_function(examples):
# TODO: here max_length should be max_length minus length of labels.
# TODO: this is for now, but maybe compute one max_length as a whole.
# Tokenize the labels.
targets = [str(label) for label in examples["label"]]
# we have to set this, truncate.
max_sni_lengths = 128
labels = tokenizer(
text_target=targets,
max_length=max_seq_length
if data_args.dataset_name != "sni"
else max_sni_lengths,
padding=False,
truncation=True,
)
# sni has long responses, while glue is all classification
max_label_length = (
MAX_LABEL_LENGTH if data_args.dataset_name != "sni" else max_sni_lengths
)
args = (
(examples[sentence1_key],)
if sentence2_key is None
else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(
*args,
padding=False,
max_length=max_seq_length - max_label_length,
truncation=True,
)
result["labels"] = labels["input_ids"]
return result
with training_args.main_process_first(desc="dataset map pre-processing"):
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
num_proc=data_args.preprocessing_num_workers,
desc="Running tokenizer on dataset",
)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
if (
training_args.do_predict
or data_args.dataset_name is not None
or data_args.test_file is not None
):
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_datasets = (
[raw_datasets["test"]]
if data_args.dataset_name != "mnli"
else [raw_datasets["test_matched"]]
)
if data_args.dataset_name == "mnli":
predict_datasets.append(raw_datasets["test_mismatched"])
if data_args.max_predict_samples is not None:
for i in range(len(predict_datasets)):
max_predict_samples = min(
len(predict_datasets[i]), data_args.max_predict_samples
)
predict_datasets[i] = predict_datasets[i].select(
range(max_predict_samples)
)
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Get the metric function
metric = get_glue_metrics(data_args.dataset_name)[0]
def compute_metrics(eval_preds):
import numpy as np
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
# Replace -100s used for padding as we can't decode them
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text_for_metric(
"rouge", decoded_preds, decoded_labels
)
result = metric(predictions=decoded_preds, targets=decoded_labels)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [
np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds
]
result["gen_len"] = np.mean(prediction_lens)
return result
# Data collator. To be consistent with the run_mlm.py we need to add `mode`.
data_collator = lambda mode: DataCollatorForCausalLMSeq2Seq( # noqa: E731
tokenizer,
# Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus.
padding="max_length" if data_args.pad_to_max_length else True,
max_length=data_args.max_seq_length,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Initialize our Trainer
trainer = ARTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics
if (training_args.do_eval or training_args.do_predict)
else None,
# preprocess_logits_for_metrics=preprocess_logits_for_metrics
# if (training_args.do_eval or training_args.do_predict)
# else None,
# data_args=data_args,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Test ***")
for i, predict_dataset in enumerate(predict_datasets):
metric_key_prefix = f"test_{i}"
metrics = trainer.evaluate(
eval_dataset=predict_dataset, metric_key_prefix=metric_key_prefix
)
max_predict_samples = (
data_args.max_predict_samples
if data_args.max_predict_samples is not None
else len(predict_dataset)
)
metrics["test_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics(metric_key_prefix, metrics)
trainer.save_metrics(metric_key_prefix, metrics)
if __name__ == "__main__":
main()