Spaces:
Sleeping
Sleeping
""" Finetuning the library models for sequence classification on GLUE.""" | |
import logging | |
import os | |
import random | |
import sys | |
import datasets | |
import transformers | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, set_seed | |
from transformers.trainer_utils import get_last_checkpoint | |
from transformers.utils import check_min_version, send_example_telemetry | |
from transformers.utils.versions import require_version | |
from .arguments import get_args | |
from .data.data_collator import DataCollatorForCausalLMSeq2Seq | |
from .data.data_utils import split_glue | |
from .data.postprocessors import postprocess_text_for_metric | |
from .data.sni.sni_collator import DataCollatorForNI | |
from .metrics.metrics import get_glue_metrics | |
from .models import load_model | |
from .trainers.trainer_ar import ARTrainer | |
# This is computed with scripts/compute_max_tokens_of_labels.py | |
MAX_LABEL_LENGTH = 5 | |
check_min_version("4.25.0") | |
require_version("datasets>=1.8.0") | |
task_to_keys = { | |
# "cola": ("sentence", None), | |
# "mnli": ("premise", "hypothesis"), | |
# "mrpc": ("sentence1", "sentence2"), | |
# "qnli": ("question", "sentence"), | |
# "qqp": ("question1", "question2"), | |
# "rte": ("sentence1", "sentence2"), | |
# "sst2": ("sentence", None), | |
# "stsb": ("sentence1", "sentence2"), | |
# "wnli": ("sentence1", "sentence2"), | |
"sni": ("inputs", None), | |
} | |
task_to_metric = { | |
# "cola": "matthews_correlation", | |
# "mnli": "accuracy", | |
# "mrpc": "combined_score", | |
# "qnli": "accuracy", | |
# "qqp": "combined_score", | |
# "rte": "accuracy", | |
# "sst2": "accuracy", | |
# "stsb": "combined_score", | |
# "wnli": "accuracy", | |
"sni": "rouge", | |
} | |
logger = logging.getLogger(__name__) | |
def main(): | |
# parse args | |
model_args, data_args, training_args, diffusion_args = get_args() | |
assert data_args.dataset_name is not None | |
data_args.dataset_name = data_args.dataset_name.lower() | |
if data_args.dataset_name not in task_to_keys.keys(): | |
raise ValueError( | |
"Unknown task, you should pick one in " + ",".join(task_to_keys.keys()) | |
) | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_glue", model_args, data_args) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if ( | |
os.path.isdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif ( | |
last_checkpoint is not None and training_args.resume_from_checkpoint is None | |
): | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# load tokenizer early | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name | |
if model_args.tokenizer_name | |
else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
padding_side=model_args.tokenizer_padding_side, | |
) | |
# Downloading and loading a dataset from the hub. | |
if data_args.dataset_name == "sni": | |
raw_datasets = load_dataset( | |
"sdlm/data/sni/sni_dataset.py", | |
cache_dir=model_args.cache_dir, | |
trust_remote_code=True, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# sni has validation / test | |
raw_datasets["validation"] = raw_datasets["test"] | |
# map into simple (inputs, labels) format | |
# makes easy to explore few-shot formats if we want. | |
collator = DataCollatorForNI( | |
tokenizer, | |
text_only=True, | |
num_pos_examples=0, | |
max_source_length=data_args.max_source_length, | |
max_target_length=data_args.max_target_length, | |
) | |
raw_datasets = raw_datasets.map( | |
collator, | |
batched=False, | |
num_proc=12, # lazy hardcode | |
# load_from_cache_file=False, | |
) | |
else: | |
raw_datasets = load_dataset( | |
"glue", | |
data_args.dataset_name, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# Split dataset, since test sets of GLUE do not have the labels. | |
if data_args.split_glue: | |
raw_datasets = split_glue( | |
raw_datasets, data_args.dataset_name, data_args.glue_split_seed | |
) | |
elif data_args.dataset_name == "mnli": | |
raw_datasets["validation"] = raw_datasets[ | |
"validation_matched" | |
] # mismatched is for reverse, and for normal is matched. | |
raw_datasets["test"] = raw_datasets["test_matched"] | |
# shuffle our datasets with the split_seed (split glue does this but otherwise not.) | |
raw_datasets = raw_datasets.shuffle(data_args.glue_split_seed) | |
# load model | |
tokenizer, model = load_model( | |
model_args, data_args, training_args, diffusion_args, logger | |
) | |
# Preprocessing the raw_datasets | |
sentence1_key, sentence2_key = task_to_keys[data_args.dataset_name] | |
if data_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
def preprocess_function(examples): | |
# TODO: here max_length should be max_length minus length of labels. | |
# TODO: this is for now, but maybe compute one max_length as a whole. | |
# Tokenize the labels. | |
targets = [str(label) for label in examples["label"]] | |
# we have to set this, truncate. | |
max_sni_lengths = 128 | |
labels = tokenizer( | |
text_target=targets, | |
max_length=max_seq_length | |
if data_args.dataset_name != "sni" | |
else max_sni_lengths, | |
padding=False, | |
truncation=True, | |
) | |
# sni has long responses, while glue is all classification | |
max_label_length = ( | |
MAX_LABEL_LENGTH if data_args.dataset_name != "sni" else max_sni_lengths | |
) | |
args = ( | |
(examples[sentence1_key],) | |
if sentence2_key is None | |
else (examples[sentence1_key], examples[sentence2_key]) | |
) | |
result = tokenizer( | |
*args, | |
padding=False, | |
max_length=max_seq_length - max_label_length, | |
truncation=True, | |
) | |
result["labels"] = labels["input_ids"] | |
return result | |
with training_args.main_process_first(desc="dataset map pre-processing"): | |
raw_datasets = raw_datasets.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache, | |
num_proc=data_args.preprocessing_num_workers, | |
desc="Running tokenizer on dataset", | |
) | |
if training_args.do_train: | |
if "train" not in raw_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = raw_datasets["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
if training_args.do_eval: | |
if "validation" not in raw_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = raw_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
if ( | |
training_args.do_predict | |
or data_args.dataset_name is not None | |
or data_args.test_file is not None | |
): | |
if "test" not in raw_datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_datasets = ( | |
[raw_datasets["test"]] | |
if data_args.dataset_name != "mnli" | |
else [raw_datasets["test_matched"]] | |
) | |
if data_args.dataset_name == "mnli": | |
predict_datasets.append(raw_datasets["test_mismatched"]) | |
if data_args.max_predict_samples is not None: | |
for i in range(len(predict_datasets)): | |
max_predict_samples = min( | |
len(predict_datasets[i]), data_args.max_predict_samples | |
) | |
predict_datasets[i] = predict_datasets[i].select( | |
range(max_predict_samples) | |
) | |
# Log a few random samples from the training set: | |
if training_args.do_train: | |
for index in random.sample(range(len(train_dataset)), 3): | |
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
# Get the metric function | |
metric = get_glue_metrics(data_args.dataset_name)[0] | |
def compute_metrics(eval_preds): | |
import numpy as np | |
preds, labels = eval_preds | |
if isinstance(preds, tuple): | |
preds = preds[0] | |
# Replace -100s used for padding as we can't decode them | |
preds = np.where(preds != -100, preds, tokenizer.pad_token_id) | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
# Some simple post-processing | |
decoded_preds, decoded_labels = postprocess_text_for_metric( | |
"rouge", decoded_preds, decoded_labels | |
) | |
result = metric(predictions=decoded_preds, targets=decoded_labels) | |
result = {k: round(v * 100, 4) for k, v in result.items()} | |
prediction_lens = [ | |
np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds | |
] | |
result["gen_len"] = np.mean(prediction_lens) | |
return result | |
# Data collator. To be consistent with the run_mlm.py we need to add `mode`. | |
data_collator = lambda mode: DataCollatorForCausalLMSeq2Seq( # noqa: E731 | |
tokenizer, | |
# Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus. | |
padding="max_length" if data_args.pad_to_max_length else True, | |
max_length=data_args.max_seq_length, | |
pad_to_multiple_of=8 if training_args.fp16 else None, | |
) | |
# Initialize our Trainer | |
trainer = ARTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics | |
if (training_args.do_eval or training_args.do_predict) | |
else None, | |
# preprocess_logits_for_metrics=preprocess_logits_for_metrics | |
# if (training_args.do_eval or training_args.do_predict) | |
# else None, | |
# data_args=data_args, | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
elif last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples | |
if data_args.max_train_samples is not None | |
else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate() | |
max_eval_samples = ( | |
data_args.max_eval_samples | |
if data_args.max_eval_samples is not None | |
else len(eval_dataset) | |
) | |
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
if training_args.do_predict: | |
logger.info("*** Test ***") | |
for i, predict_dataset in enumerate(predict_datasets): | |
metric_key_prefix = f"test_{i}" | |
metrics = trainer.evaluate( | |
eval_dataset=predict_dataset, metric_key_prefix=metric_key_prefix | |
) | |
max_predict_samples = ( | |
data_args.max_predict_samples | |
if data_args.max_predict_samples is not None | |
else len(predict_dataset) | |
) | |
metrics["test_samples"] = min(max_predict_samples, len(predict_dataset)) | |
trainer.log_metrics(metric_key_prefix, metrics) | |
trainer.save_metrics(metric_key_prefix, metrics) | |
if __name__ == "__main__": | |
main() | |