CMD=" accelerate launch -m --mixed_precision bf16 sdlm.train_sentiment_model \ --dataset_name cardiffnlp/tweet_eval \ --dataset_config_name sentiment \ --num_train_epochs 2 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --remove_unused_columns=False \ --warmup_ratio 0.03 \ --learning_rate=2e-5 \ --logging_steps=50 \ --save_total_limit 1 \ --max_seq_length=512 \ --gradient_checkpointing \ --bf16 \ --do_train \ --do_eval \ --optim adamw_torch_fused \ --model_revision 26bca36bde8333b5d7f72e9ed20ccda6a618af24 \ --shuffle_train_dataset \ --metric_name accuracy \ --text_column_name "text" \ --text_column_delimiter "\n" \ --label_column_name label \ --overwrite_output_dir \ " # on beaker, load from niklas' trained mistral model. if [ ! -z "${BEAKER}" ]; then gantry run -y -n mistral_train_sentiment_classifier -t mistral_train_sentiment_classifier --allow-dirty \ --workspace ai2/tess2 \ --gpus 1 \ --priority normal \ --preemptible \ --budget ai2/allennlp \ --cluster ai2/pluto-cirrascale \ --cluster ai2/jupiter-cirrascale-2 \ --env 'HF_HOME=/net/nfs.cirrascale/allennlp/jaket/.hf' \ --env 'PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python' \ --dataset '01J0PF0NKZP7SD8TMRH2PD0NFK:/model' \ --beaker-image 'ai2/pytorch2.0.0-cuda11.8-python3.10' \ --env-secret HF_TOKEN=HF_TOKEN \ --venv 'base' \ --pip requirements.txt \ -- ${CMD} \ --model_name_or_path /model \ --evaluation_strategy="epoch" \ --gradient_accumulation_steps 32 \ --output_dir /results else ${CMD} \ --model_name_or_path mistralai/Mistral-7B-v0.1 \ --evaluation_strategy="steps" \ --eval_steps 100 \ --eval_steps 100 \ --save_steps 100 \ --gradient_accumulation_steps 32 \ --output_dir outputs/test fi