hamzaherry commited on
Commit
472cb47
·
verified ·
1 Parent(s): 0de1a00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -0
app.py CHANGED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import faiss
3
+ import streamlit as st
4
+ from PyPDF2 import PdfReader
5
+ from sentence_transformers import SentenceTransformer
6
+ from groq import Groq
7
+ from dotenv import load_dotenv
8
+
9
+
10
+
11
+ # Initialize Groq client
12
+ client = Groq(api_key="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")
13
+
14
+ # Load Sentence Transformer model
15
+ model = SentenceTransformer("all-MiniLM-L6-v2")
16
+
17
+ # Initialize FAISS
18
+ dimension = 384 # Embedding size for the Sentence Transformer model
19
+ index = faiss.IndexFlatL2(dimension)
20
+
21
+ # Function to process PDF and create embeddings
22
+ def process_pdf(pdf_file):
23
+ pdf_reader = PdfReader(pdf_file)
24
+ text = ""
25
+ for page in pdf_reader.pages:
26
+ text += page.extract_text()
27
+ chunks = [text[i:i + 500] for i in range(0, len(text), 500)] # Chunk into 500-char blocks
28
+ embeddings = model.encode(chunks)
29
+ index.add(embeddings)
30
+ return chunks, embeddings
31
+
32
+ # Function to query FAISS and generate a response
33
+ def query_model(query):
34
+ query_vector = model.encode([query])
35
+ _, indices = index.search(query_vector, k=3) # Top 3 similar chunks
36
+ response_chunks = [stored_chunks[idx] for idx in indices[0]]
37
+ context = " ".join(response_chunks)
38
+
39
+ # Groq API call
40
+ chat_completion = client.chat.completions.create(
41
+ messages=[
42
+ {
43
+ "role": "user",
44
+ "content": f"Context: {context}\n\nQuery: {query}",
45
+ }
46
+ ],
47
+ model="llama3-8b-8192",
48
+ )
49
+ return chat_completion.choices[0].message.content
50
+
51
+ # Streamlit app
52
+ st.title("RAG-based PDF Question Answering")
53
+ st.write("Upload a PDF and ask questions based on its content.")
54
+
55
+ uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
56
+ if uploaded_file:
57
+ stored_chunks, _ = process_pdf(uploaded_file)
58
+ st.success("PDF processed and embeddings created.")
59
+
60
+ query = st.text_input("Ask a question:")
61
+ if query:
62
+ answer = query_model(query)
63
+ st.write("### Answer:")
64
+ st.write(answer)