Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,8 @@ import faiss
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import numpy as np
|
8 |
from groq import Groq
|
|
|
9 |
|
10 |
-
# Groq API Key
|
11 |
GROQ_API_KEY = "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"
|
12 |
client = Groq(api_key=GROQ_API_KEY)
|
13 |
|
@@ -21,7 +21,16 @@ faiss_index = faiss.IndexFlatL2(embedding_dim)
|
|
21 |
# Store Metadata
|
22 |
metadata_store = []
|
23 |
|
24 |
-
# Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def extract_text_from_pdf(pdf_file):
|
26 |
pdf_reader = PdfReader(pdf_file)
|
27 |
text = ""
|
@@ -29,17 +38,21 @@ def extract_text_from_pdf(pdf_file):
|
|
29 |
text += page.extract_text()
|
30 |
return text
|
31 |
|
|
|
32 |
def chunk_text(text, chunk_size=500):
|
33 |
words = text.split()
|
34 |
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
35 |
|
|
|
36 |
def generate_embeddings(chunks):
|
37 |
return embedding_model.encode(chunks)
|
38 |
|
|
|
39 |
def store_embeddings(embeddings, metadata):
|
40 |
faiss_index.add(np.array(embeddings))
|
41 |
metadata_store.extend(metadata)
|
42 |
|
|
|
43 |
def retrieve_relevant_chunks(query, k=5):
|
44 |
query_embedding = embedding_model.encode([query])
|
45 |
distances, indices = faiss_index.search(query_embedding, k)
|
@@ -48,6 +61,7 @@ def retrieve_relevant_chunks(query, k=5):
|
|
48 |
]
|
49 |
return valid_results
|
50 |
|
|
|
51 |
def ask_groq_api(question, context):
|
52 |
chat_completion = client.chat.completions.create(
|
53 |
messages=[{"role": "user", "content": f"{context}\n\n{question}"}],
|
@@ -55,23 +69,7 @@ def ask_groq_api(question, context):
|
|
55 |
)
|
56 |
return chat_completion.choices[0].message.content
|
57 |
|
58 |
-
|
59 |
-
gaps = []
|
60 |
-
for i, chunk_1 in enumerate(chunks):
|
61 |
-
for j, chunk_2 in enumerate(chunks):
|
62 |
-
if i != j:
|
63 |
-
if chunk_1[:100] != chunk_2[:100]: # Example heuristic
|
64 |
-
gaps.append(f"Potential inconsistency between chunk {i} and chunk {j}.")
|
65 |
-
return "\n".join(gaps) if gaps else "No major inconsistencies found."
|
66 |
-
|
67 |
-
def identify_research_gaps(chunks):
|
68 |
-
unanswered_questions = []
|
69 |
-
for chunk in chunks:
|
70 |
-
if "future research" in chunk or "unanswered questions" in chunk:
|
71 |
-
unanswered_questions.append(chunk)
|
72 |
-
return "\n".join(unanswered_questions) if unanswered_questions else "No specific unanswered questions found."
|
73 |
-
|
74 |
-
# Main Streamlit App Logic
|
75 |
st.title("RAG-Based Research Paper Analyzer")
|
76 |
|
77 |
uploaded_files = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type="pdf")
|
@@ -90,6 +88,58 @@ if uploaded_files:
|
|
90 |
|
91 |
st.success("Files uploaded and processed successfully!")
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
research_gap_analysis = identify_research_gaps(all_chunks)
|
95 |
-
st.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import numpy as np
|
8 |
from groq import Groq
|
9 |
+
import faiss
|
10 |
|
|
|
11 |
GROQ_API_KEY = "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"
|
12 |
client = Groq(api_key=GROQ_API_KEY)
|
13 |
|
|
|
21 |
# Store Metadata
|
22 |
metadata_store = []
|
23 |
|
24 |
+
# Function to identify unanswered questions based on comparative analysis of multiple papers
|
25 |
+
def identify_research_gaps(chunks):
|
26 |
+
unanswered_questions = []
|
27 |
+
# Simulate a simple search for keywords related to unanswered questions
|
28 |
+
for chunk in chunks:
|
29 |
+
if "future research" in chunk or "unanswered questions" in chunk:
|
30 |
+
unanswered_questions.append(chunk)
|
31 |
+
return "\n".join(unanswered_questions) if unanswered_questions else "No specific unanswered questions found."
|
32 |
+
|
33 |
+
# Function to extract text from PDFs
|
34 |
def extract_text_from_pdf(pdf_file):
|
35 |
pdf_reader = PdfReader(pdf_file)
|
36 |
text = ""
|
|
|
38 |
text += page.extract_text()
|
39 |
return text
|
40 |
|
41 |
+
# Function to chunk text
|
42 |
def chunk_text(text, chunk_size=500):
|
43 |
words = text.split()
|
44 |
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
45 |
|
46 |
+
# Function to generate embeddings
|
47 |
def generate_embeddings(chunks):
|
48 |
return embedding_model.encode(chunks)
|
49 |
|
50 |
+
# Store embeddings in FAISS index
|
51 |
def store_embeddings(embeddings, metadata):
|
52 |
faiss_index.add(np.array(embeddings))
|
53 |
metadata_store.extend(metadata)
|
54 |
|
55 |
+
# Retrieve relevant chunks based on query
|
56 |
def retrieve_relevant_chunks(query, k=5):
|
57 |
query_embedding = embedding_model.encode([query])
|
58 |
distances, indices = faiss_index.search(query_embedding, k)
|
|
|
61 |
]
|
62 |
return valid_results
|
63 |
|
64 |
+
# Call Groq API to get answers and research gap analysis
|
65 |
def ask_groq_api(question, context):
|
66 |
chat_completion = client.chat.completions.create(
|
67 |
messages=[{"role": "user", "content": f"{context}\n\n{question}"}],
|
|
|
69 |
)
|
70 |
return chat_completion.choices[0].message.content
|
71 |
|
72 |
+
# Streamlit UI setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
st.title("RAG-Based Research Paper Analyzer")
|
74 |
|
75 |
uploaded_files = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type="pdf")
|
|
|
88 |
|
89 |
st.success("Files uploaded and processed successfully!")
|
90 |
|
91 |
+
# Button to view topic summaries with an emoji
|
92 |
+
if st.button("View Topic Summaries", help="Click to view a brief summary of the uploaded papers", icon="📚"):
|
93 |
+
for chunk in all_chunks[:3]:
|
94 |
+
st.write(chunk)
|
95 |
+
|
96 |
+
# User input for query without the icon
|
97 |
+
user_question = st.text_input("Ask a question about the uploaded papers:", help="Ask about specific research details")
|
98 |
+
|
99 |
+
if user_question:
|
100 |
+
relevant_chunks = retrieve_relevant_chunks(user_question)
|
101 |
+
if relevant_chunks:
|
102 |
+
context = "\n\n".join([chunk['chunk'] for chunk, _ in relevant_chunks])
|
103 |
+
answer = ask_groq_api(user_question, context)
|
104 |
+
st.write("**Answer:**", answer)
|
105 |
+
|
106 |
+
# Implement Research Gap Identification based on inconsistencies between papers
|
107 |
+
st.subheader("Research Gap Analysis:", icon="⚠️")
|
108 |
+
# We will analyze the chunks and context to identify research gaps
|
109 |
+
research_gap = analyze_research_gaps(all_chunks)
|
110 |
+
st.write(f"**Research Gaps Identified:** {research_gap}")
|
111 |
+
else:
|
112 |
+
st.write("No relevant sections found for your question.")
|
113 |
+
|
114 |
+
# Adding an emoji for research gap feature
|
115 |
+
if st.button("Identify Research Gaps", help="Find unanswered questions or areas where research is lacking", icon="⚠️"):
|
116 |
+
st.write("**Research Gap Analysis:**")
|
117 |
+
# Implementing research gap analysis based on comparing papers
|
118 |
research_gap_analysis = identify_research_gaps(all_chunks)
|
119 |
+
st.write(research_gap_analysis)
|
120 |
+
|
121 |
+
# Button to generate scatter plot with a chart emoji
|
122 |
+
if st.button("Generate Scatter Plot", icon="📊"):
|
123 |
+
st.write("Generating scatter plot for methods vs. results...")
|
124 |
+
# Example scatter plot (replace with real data)
|
125 |
+
x = np.random.rand(10)
|
126 |
+
y = np.random.rand(10)
|
127 |
+
plt.scatter(x, y)
|
128 |
+
plt.xlabel("Methods")
|
129 |
+
plt.ylabel("Results")
|
130 |
+
st.pyplot(plt)
|
131 |
+
|
132 |
+
# Text area for annotations without the icon
|
133 |
+
st.text_area("Annotate Your Insights:", height=100, key="annotations", help="Add your thoughts or comments here")
|
134 |
+
|
135 |
+
# Function to analyze and identify research gaps by comparing chunks from different papers
|
136 |
+
def analyze_research_gaps(chunks):
|
137 |
+
# Here we would compare text from different papers to identify discrepancies
|
138 |
+
gaps = []
|
139 |
+
for i, chunk_1 in enumerate(chunks):
|
140 |
+
for j, chunk_2 in enumerate(chunks):
|
141 |
+
if i != j:
|
142 |
+
# Simple heuristic to compare chunks for inconsistencies or gaps
|
143 |
+
if chunk_1[:100] != chunk_2[:100]: # Checking first 100 characters for difference
|
144 |
+
gaps.append(f"Potential inconsistency between chunk {i} and chunk {j}.")
|
145 |
+
return "\n".join(gaps) if gaps else "No major inconsistencies found."
|