hamzaherry commited on
Commit
e779dd7
·
verified ·
1 Parent(s): 82aa7a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -9
app.py CHANGED
@@ -1,5 +1,3 @@
1
-
2
-
3
  import os
4
  import whisper
5
  from groq import Groq
@@ -8,7 +6,7 @@ import tempfile
8
  import gradio as gr
9
 
10
  # Step 1: Set up Whisper for transcription
11
- model = whisper.load_model("base")
12
 
13
  # Function to transcribe audio using Whisper
14
  def transcribe_audio(audio_file):
@@ -31,11 +29,9 @@ def get_groq_response(text):
31
  # Step 3: Convert text response from LLM to speech using GTTS
32
  def text_to_speech(text):
33
  tts = gTTS(text)
34
-
35
  # Save the audio to a temporary file
36
  temp_file = tempfile.NamedTemporaryFile(delete=False)
37
  tts.save(temp_file.name)
38
-
39
  # Return the file path for Gradio to play the audio
40
  return temp_file.name
41
 
@@ -43,18 +39,15 @@ def text_to_speech(text):
43
  def voice_chatbot(audio_input):
44
  # Step 1: Transcribe the audio using Whisper
45
  transcription = transcribe_audio(audio_input)
46
-
47
  # Step 2: Get response from Groq API using the transcription
48
  response = get_groq_response(transcription)
49
-
50
  # Step 3: Convert the response text to speech using GTTS
51
  audio_response = text_to_speech(response)
52
-
53
  # Return the audio response (Gradio will play it)
54
  return audio_response
55
 
56
  # Step 5: Create the Gradio interface (microphone input and audio output)
57
- iface = gr.Interface(fn=voice_chatbot,
58
  inputs=gr.Audio(type="filepath"), # No source="microphone" argument
59
  outputs=gr.Audio(),
60
  live=True)
 
 
 
1
  import os
2
  import whisper
3
  from groq import Groq
 
6
  import gradio as gr
7
 
8
  # Step 1: Set up Whisper for transcription
9
+ model = whisper.load_model("base") # Ensure correct version of whisper is installed
10
 
11
  # Function to transcribe audio using Whisper
12
  def transcribe_audio(audio_file):
 
29
  # Step 3: Convert text response from LLM to speech using GTTS
30
  def text_to_speech(text):
31
  tts = gTTS(text)
 
32
  # Save the audio to a temporary file
33
  temp_file = tempfile.NamedTemporaryFile(delete=False)
34
  tts.save(temp_file.name)
 
35
  # Return the file path for Gradio to play the audio
36
  return temp_file.name
37
 
 
39
  def voice_chatbot(audio_input):
40
  # Step 1: Transcribe the audio using Whisper
41
  transcription = transcribe_audio(audio_input)
 
42
  # Step 2: Get response from Groq API using the transcription
43
  response = get_groq_response(transcription)
 
44
  # Step 3: Convert the response text to speech using GTTS
45
  audio_response = text_to_speech(response)
 
46
  # Return the audio response (Gradio will play it)
47
  return audio_response
48
 
49
  # Step 5: Create the Gradio interface (microphone input and audio output)
50
+ iface = gr.Interface(fn=voice_chatbot,
51
  inputs=gr.Audio(type="filepath"), # No source="microphone" argument
52
  outputs=gr.Audio(),
53
  live=True)