File size: 2,949 Bytes
6709fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
from inference import initialize_styleres
from utils import AppUtils
from datasets.process_image import ImageProcessor
from argparse import ArgumentParser

EXAMPLES = [
    ["test_sample/1.jpg", "InterfaceGAN",  "Smile", "2.0",  False],
]

parser = ArgumentParser()
parser.add_argument('--device', type=str, default='cpu', help='Which device to use')
args = parser.parse_args()

utils = AppUtils()
methods = utils.get_methods()
styleres = initialize_styleres('checkpoints/styleres_ffhq.pth', args.device)
image_processor = ImageProcessor('checkpoints/shape_predictor_68_face_landmarks.dat')

def process_image(image, method,  edit, factor, is_align_checked):
    cfg = utils.args_to_cfg(method, edit, factor)
    if is_align_checked:
        image = image_processor.align_face(image)
    image = image_processor.preprocess_image(image, is_batch=False)
    image = styleres.edit_images(image, cfg)
    image = image_processor.postprocess_image(image.detach().cpu().numpy(), is_batch=False)
    return image

def update_edit_dropdown(method):
    choices = utils.get_edits(method)
    return gr.Dropdown.update(choices=choices, value=choices[0])
    
def update_slider(method):
    minimum, maximum, step= utils.get_range(method)
    return gr.Slider.update(minimum=minimum, maximum=maximum, value=0, step=step, label=f"Strength [{minimum}, {maximum}]")


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # StyleRes: Transforming the Residuals for Real Image Editing with StyleGAN (CVPR2023)
    """)
    with gr.Row():
        image_input = gr.Image(type="pil", shape=(256,256), label='Input Image', value="test_sample/116.jpg")
        image_output = gr.Image(type="pil", shape=(256,256), label='Output Image')

    with gr.Row():
        with gr.Column(scale=0.25, min_width=50):
            methods_drowdown = gr.Dropdown(methods, label="Choose Method", value=methods[0])
        with gr.Column(scale=0.25, min_width=50):
            edits_dropdown = gr.Dropdown(utils.get_edits(methods[0]), label="Choose Edit", value=utils.get_edits(methods[0])[0])
 

    with gr.Row(): 
        with gr.Column(scale=0.1, min_width=50):
            is_align_checked = gr.Checkbox(label="Crop + Align")
        with gr.Column(scale=0.4, min_width=50):
            factor_slider = gr.Slider(-5, 5, value=0, label="Strength [-5, 5]")

    gr.Examples(
        examples=EXAMPLES,
        inputs=[image_input, methods_drowdown,  edits_dropdown, factor_slider, is_align_checked],
        outputs=image_output,
        fn=process_image,
        cache_examples=True,
    )
    methods_drowdown.change(update_edit_dropdown, inputs=methods_drowdown, outputs=edits_dropdown )
    methods_drowdown.change(update_slider, inputs=methods_drowdown, outputs=factor_slider)
    factor_slider.release(process_image, inputs=[image_input, methods_drowdown,  edits_dropdown, factor_slider, is_align_checked], outputs=image_output)

demo.launch(debug=True)