File size: 6,276 Bytes
6709fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

import numpy as np
import torch
from PIL import Image
import dlib
import numpy as np
import PIL
import PIL.Image
import scipy
import scipy.ndimage

class ImageProcessor():
    def __init__(self, predictor_path=None) -> None:
        self.predictor = None
        if predictor_path:
            self.predictor =  dlib.shape_predictor(predictor_path)
    
    @staticmethod
    def preprocess_image(image, is_batch=True):
        image = image.resize( (256, 256))
        image = np.asarray(image).transpose(2, 0, 1).astype(np.float32) # C,H,W -> H,W,C
        image = torch.FloatTensor(image.copy())
        image = (image - 127.5) / 127.5     # Normalize
        if not is_batch:
            image = image.unsqueeze(0)
        return image

    """
        Input: A numpy image with shape NxCxHxW.
        Output: Output image with NxHxWxC with values between 0-255
    """
    @staticmethod
    def postprocess_image(image, min_val=-1.0, max_val=1.0, is_batch=True):
        image = image.astype(np.float64)
        image = (image - min_val) * 255 / (max_val - min_val)
        image = np.clip(image + 0.5, 0, 255).astype(np.uint8)
        image = image.transpose(0, 2, 3, 1)
        if not is_batch:
           image = Image.fromarray(image[0]).resize((256,256))
        return image

    """
    brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
    author: lzhbrian (https://lzhbrian.me)
    date: 2020.1.5
    note: code is heavily borrowed from
        https://github.com/NVlabs/ffhq-dataset
        http://dlib.net/face_landmark_detection.py.html
    requirements:
        apt install cmake
        conda install Pillow numpy scipy
        pip install dlib
        # download face landmark model from:
        # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
    """

    def get_landmark(self, image):
        """get landmark with dlib
        :return: np.array shape=(68, 2)
        """
        detector = dlib.get_frontal_face_detector()

        # img = dlib.load_rgb_image(filepath)
        img = np.asarray(image)
        dets = detector(img, 1)

        for k, d in enumerate(dets):
            shape = self.predictor(img, d)

        t = list(shape.parts())
        a = []
        for tt in t:
            a.append([tt.x, tt.y])
        lm = np.array(a)
        return lm

    def align_face(self, img):
        """
        :param image: PIL image
        :return: PIL Image
        """
        if self.predictor is None:
            return img

        lm = self.get_landmark(img)

        lm_chin = lm[0: 17]  # left-right
        lm_eyebrow_left = lm[17: 22]  # left-right
        lm_eyebrow_right = lm[22: 27]  # left-right
        lm_nose = lm[27: 31]  # top-down
        lm_nostrils = lm[31: 36]  # top-down
        lm_eye_left = lm[36: 42]  # left-clockwise
        lm_eye_right = lm[42: 48]  # left-clockwise
        lm_mouth_outer = lm[48: 60]  # left-clockwise
        lm_mouth_inner = lm[60: 68]  # left-clockwise

        # Calculate auxiliary vectors.
        eye_left = np.mean(lm_eye_left, axis=0)
        eye_right = np.mean(lm_eye_right, axis=0)
        eye_avg = (eye_left + eye_right) * 0.5
        eye_to_eye = eye_right - eye_left
        mouth_left = lm_mouth_outer[0]
        mouth_right = lm_mouth_outer[6]
        mouth_avg = (mouth_left + mouth_right) * 0.5
        eye_to_mouth = mouth_avg - eye_avg

        # Choose oriented crop rectangle.
        x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
        x /= np.hypot(*x)
        x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
        y = np.flipud(x) * [-1, 1]
        c = eye_avg + eye_to_mouth * 0.1
        quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
        qsize = np.hypot(*x) * 2

        # read image
        # img = PIL.Image.open(filepath)

        output_size = 512
        transform_size = 1024
        enable_padding = True

        # Shrink.
        shrink = int(np.floor(qsize / output_size * 0.5))
        if shrink > 1:
            rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
            img = img.resize(rsize, PIL.Image.ANTIALIAS)
            quad /= shrink
            qsize /= shrink

        # Crop.
        border = max(int(np.rint(qsize * 0.1)), 3)
        crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
                int(np.ceil(max(quad[:, 1]))))
        crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
                min(crop[3] + border, img.size[1]))
        if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
            img = img.crop(crop)
            quad -= crop[0:2]

        # Pad.
        pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
            int(np.ceil(max(quad[:, 1]))))
        pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
            max(pad[3] - img.size[1] + border, 0))
        if enable_padding and max(pad) > border - 4:
            pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
            img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
            h, w, _ = img.shape
            y, x, _ = np.ogrid[:h, :w, :1]
            mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
                            1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
            blur = qsize * 0.02
            img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
            img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
            img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
            quad += pad[:2]

        # Transform.
        img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
        if output_size < transform_size:
            img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)

        # Save aligned image.
        img.save('aligned.png')
        return img