File size: 12,092 Bytes
6709fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import namedtuple

def _upsample_add(x, y):
    _, _, H, W = y.size()
    return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y



class EqualLinear(nn.Module):
    def __init__(
            self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
    ):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))

        else:
            self.bias = None

        self.activation = activation

        self.scale = (1 / math.sqrt(in_dim)) * lr_mul
        self.lr_mul = lr_mul

    def forward(self, input):
        # if self.activation:
        #     out = F.linear(input, self.weight * self.scale)
        #     out = fused_leaky_relu(out, self.bias * self.lr_mul)

        # else:
        out = F.linear(
            input, self.weight * self.scale, bias=self.bias * self.lr_mul
        )

        return out

    def __repr__(self):
        return (
            f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
        )

class GradualStyleBlock(nn.Module):
    def __init__(self, in_c, out_c, spatial):
        super(GradualStyleBlock, self).__init__()
        self.out_c = out_c
        self.spatial = spatial
        num_pools = int(np.log2(spatial))
        modules = []
        modules += [nn.Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
                    nn.LeakyReLU()]
        for i in range(num_pools - 1):
            modules += [
                nn.Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
                nn.LeakyReLU()
            ]
        self.convs = nn.Sequential(*modules)
        self.linear = EqualLinear(out_c, out_c, lr_mul=1)

    def forward(self, x):
        x = self.convs(x)
        x = x.view(-1, self.out_c)
        x = self.linear(x)
        return x

class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
    """ A named tuple describing a ResNet block. """

class bottleneck_IR(nn.Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = nn.MaxPool2d(1, stride)
        else:
            self.shortcut_layer = nn.Sequential(
                nn.Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                nn.BatchNorm2d(depth)
            )
        self.res_layer = nn.Sequential(
            nn.BatchNorm2d(in_channel),
            nn.Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), nn.PReLU(depth),
            nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False), nn.BatchNorm2d(depth)
        )

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut

class SEModule(nn.Module):
    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x

class bottleneck_IR_SE(nn.Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR_SE, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = nn.MaxPool2d(1, stride)
        else:
            self.shortcut_layer = nn.Sequential(
                nn.Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                nn.BatchNorm2d(depth)
            )
        self.res_layer = nn.Sequential(
            nn.BatchNorm2d(in_channel),
            nn.Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
            nn.PReLU(depth),
            nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
            nn.BatchNorm2d(depth),
            SEModule(depth, 16)
        )

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut


def get_block(in_channel, depth, num_units, stride=2):
    return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]

def get_blocks(num_layers):
    if num_layers == 50:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=4),
            get_block(in_channel=128, depth=256, num_units=14),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    elif num_layers == 100:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=13),
            get_block(in_channel=128, depth=256, num_units=30),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    elif num_layers == 152:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=8),
            get_block(in_channel=128, depth=256, num_units=36),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    else:
        raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
    return blocks

class Encoder4Editing(nn.Module):
    def __init__(self, num_layers, mode='ir', stylegan_size=1024, out_res=64):
        super(Encoder4Editing, self).__init__()
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.out_res = out_res
        self.input_layer = nn.Sequential(nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False),
                                      nn.BatchNorm2d(64),
                                      nn.PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(unit_module(bottleneck.in_channel,
                                           bottleneck.depth,
                                           bottleneck.stride))
        self.body = nn.Sequential(*modules)

        self.styles = nn.ModuleList()
        log_size = int(math.log(stylegan_size, 2))
        self.style_count = 2 * log_size - 2
        self.coarse_ind = 3
        self.middle_ind = 7

        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32)
            else:
                style = GradualStyleBlock(512, 512, 64)
            self.styles.append(style)

        self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        x = self.input_layer(x)

        modulelist = list(self.body._modules.values())
        for i, l in enumerate(modulelist):
            x = l(x)
            if i == 2:
                c0 = x
            if i == 6:
                c1 = x
            elif i == 20:
                c2 = x
            elif i == 23:
                c3 = x

        # Infer main W and duplicate it
        w0 = self.styles[0](c3)
        w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2)

        features = c3
        for i in range(1, self.style_count):  # Infer additional deltas
            if i == self.coarse_ind:
                p2 = _upsample_add(c3, self.latlayer1(c2))  # FPN's middle features
                features = p2
            elif i == self.middle_ind:
                p1 = _upsample_add(p2, self.latlayer2(c1))  # FPN's fine features
                features = p1
            delta_i = self.styles[i](features)
            w[:, i] += delta_i

        c = {   128: c0,
                64: c1,
                32: c2,
                16: c3
             }.get(self.out_res)
        return w, c

class EqualConv2d(nn.Module):
    def __init__(
            self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
    ):
        super().__init__()

        self.weight = nn.Parameter(
            torch.randn(out_channel, in_channel, kernel_size, kernel_size)
        )
        self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)

        self.stride = stride
        self.padding = padding

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channel))

        else:
            self.bias = None

    def forward(self, input):
        out = F.conv2d(
            input,
            self.weight * self.scale,
            bias=self.bias,
            stride=self.stride,
            padding=self.padding,
        )

        return out

    def __repr__(self):
        return (
            f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
            f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
        )

class ScaledLeakyReLU(nn.Module):
    def __init__(self, negative_slope=0.2):
        super().__init__()

        self.negative_slope = negative_slope

    def forward(self, input):
        out = F.leaky_relu(input, negative_slope=self.negative_slope)

        return out * math.sqrt(2)

class HighResFeat(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(HighResFeat, self).__init__()

        self.shared = EqualConv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=True)

        self.conv1 =  EqualConv2d(out_channels, 1, kernel_size=3, padding=1, bias=True)
        self.conv2 =  EqualConv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=True)
        self.activation = ScaledLeakyReLU(0.2)

        self.sigmoid = nn.Sigmoid()

        self.skip = None
        if in_channels != out_channels:
            self.skip = EqualConv2d(in_channels, out_channels, kernel_size=1, padding=0, bias=False)
    
    def forward(self, x):

        shared_feats = self.shared(x)
        shared_feats = self.activation(shared_feats)

        gate = self.conv1(shared_feats)
        gate = self.sigmoid(gate)

        addition = self.conv2(shared_feats)
        addition = self.activation(addition)

        if self.skip is not None:
            x = self.skip(x)
        return gate, addition+x

class E4E_Inversion(nn.Module):
    def __init__(self, resolution, num_layers = 50, mode='ir_se', out_res=64):
        super(E4E_Inversion, self).__init__()
        self.out_res = out_res
        resolution = 1024
        self.basic_encoder = Encoder4Editing(num_layers, mode, resolution, self.out_res)
        self.latent_avg = None
        # ckpt = torch.load(e4e_path, map_location='cpu')
        # self.latent_avg = ckpt['latent_avg'].cuda()
        # ckpt = {k[k.find(".")+1:]: v for k, v in ckpt['state_dict'].items() if "decoder" not in k}
        # self.basic_encoder.load_state_dict(ckpt, strict=True)

    def freeze_basic_encoder(self):
        self.basic_encoder.eval()   #Basic Encoder always in eval mode.
        #No backprop to basic Encoder
        for param in self.basic_encoder.parameters():
            param.requires_grad = False 

    def forward(self, reals):
        self.freeze_basic_encoder()
        w, c = self.basic_encoder(reals)
        w = w + self.latent_avg
        highres_outs = {f"{self.out_res}x{self.out_res}": c} #{"gates": gates, "additions": additions}
        return w, highres_outs