Spaces:
Runtime error
Runtime error
File size: 12,092 Bytes
6709fc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import namedtuple
def _upsample_add(x, y):
_, _, H, W = y.size()
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
class EqualLinear(nn.Module):
def __init__(
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
# if self.activation:
# out = F.linear(input, self.weight * self.scale)
# out = fused_leaky_relu(out, self.bias * self.lr_mul)
# else:
out = F.linear(
input, self.weight * self.scale, bias=self.bias * self.lr_mul
)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class GradualStyleBlock(nn.Module):
def __init__(self, in_c, out_c, spatial):
super(GradualStyleBlock, self).__init__()
self.out_c = out_c
self.spatial = spatial
num_pools = int(np.log2(spatial))
modules = []
modules += [nn.Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()]
for i in range(num_pools - 1):
modules += [
nn.Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()
]
self.convs = nn.Sequential(*modules)
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
def forward(self, x):
x = self.convs(x)
x = x.view(-1, self.out_c)
x = self.linear(x)
return x
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
""" A named tuple describing a ResNet block. """
class bottleneck_IR(nn.Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR, self).__init__()
if in_channel == depth:
self.shortcut_layer = nn.MaxPool2d(1, stride)
else:
self.shortcut_layer = nn.Sequential(
nn.Conv2d(in_channel, depth, (1, 1), stride, bias=False),
nn.BatchNorm2d(depth)
)
self.res_layer = nn.Sequential(
nn.BatchNorm2d(in_channel),
nn.Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), nn.PReLU(depth),
nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False), nn.BatchNorm2d(depth)
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class SEModule(nn.Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class bottleneck_IR_SE(nn.Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR_SE, self).__init__()
if in_channel == depth:
self.shortcut_layer = nn.MaxPool2d(1, stride)
else:
self.shortcut_layer = nn.Sequential(
nn.Conv2d(in_channel, depth, (1, 1), stride, bias=False),
nn.BatchNorm2d(depth)
)
self.res_layer = nn.Sequential(
nn.BatchNorm2d(in_channel),
nn.Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
nn.PReLU(depth),
nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
nn.BatchNorm2d(depth),
SEModule(depth, 16)
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
def get_blocks(num_layers):
if num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3)
]
else:
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
return blocks
class Encoder4Editing(nn.Module):
def __init__(self, num_layers, mode='ir', stylegan_size=1024, out_res=64):
super(Encoder4Editing, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.out_res = out_res
self.input_layer = nn.Sequential(nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False),
nn.BatchNorm2d(64),
nn.PReLU(64))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = nn.Sequential(*modules)
self.styles = nn.ModuleList()
log_size = int(math.log(stylegan_size, 2))
self.style_count = 2 * log_size - 2
self.coarse_ind = 3
self.middle_ind = 7
for i in range(self.style_count):
if i < self.coarse_ind:
style = GradualStyleBlock(512, 512, 16)
elif i < self.middle_ind:
style = GradualStyleBlock(512, 512, 32)
else:
style = GradualStyleBlock(512, 512, 64)
self.styles.append(style)
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
def forward(self, x):
x = self.input_layer(x)
modulelist = list(self.body._modules.values())
for i, l in enumerate(modulelist):
x = l(x)
if i == 2:
c0 = x
if i == 6:
c1 = x
elif i == 20:
c2 = x
elif i == 23:
c3 = x
# Infer main W and duplicate it
w0 = self.styles[0](c3)
w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2)
features = c3
for i in range(1, self.style_count): # Infer additional deltas
if i == self.coarse_ind:
p2 = _upsample_add(c3, self.latlayer1(c2)) # FPN's middle features
features = p2
elif i == self.middle_ind:
p1 = _upsample_add(p2, self.latlayer2(c1)) # FPN's fine features
features = p1
delta_i = self.styles[i](features)
w[:, i] += delta_i
c = { 128: c0,
64: c1,
32: c2,
16: c3
}.get(self.out_res)
return w, c
class EqualConv2d(nn.Module):
def __init__(
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
):
super().__init__()
self.weight = nn.Parameter(
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
)
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
self.stride = stride
self.padding = padding
if bias:
self.bias = nn.Parameter(torch.zeros(out_channel))
else:
self.bias = None
def forward(self, input):
out = F.conv2d(
input,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
)
class ScaledLeakyReLU(nn.Module):
def __init__(self, negative_slope=0.2):
super().__init__()
self.negative_slope = negative_slope
def forward(self, input):
out = F.leaky_relu(input, negative_slope=self.negative_slope)
return out * math.sqrt(2)
class HighResFeat(nn.Module):
def __init__(self, in_channels, out_channels):
super(HighResFeat, self).__init__()
self.shared = EqualConv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=True)
self.conv1 = EqualConv2d(out_channels, 1, kernel_size=3, padding=1, bias=True)
self.conv2 = EqualConv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=True)
self.activation = ScaledLeakyReLU(0.2)
self.sigmoid = nn.Sigmoid()
self.skip = None
if in_channels != out_channels:
self.skip = EqualConv2d(in_channels, out_channels, kernel_size=1, padding=0, bias=False)
def forward(self, x):
shared_feats = self.shared(x)
shared_feats = self.activation(shared_feats)
gate = self.conv1(shared_feats)
gate = self.sigmoid(gate)
addition = self.conv2(shared_feats)
addition = self.activation(addition)
if self.skip is not None:
x = self.skip(x)
return gate, addition+x
class E4E_Inversion(nn.Module):
def __init__(self, resolution, num_layers = 50, mode='ir_se', out_res=64):
super(E4E_Inversion, self).__init__()
self.out_res = out_res
resolution = 1024
self.basic_encoder = Encoder4Editing(num_layers, mode, resolution, self.out_res)
self.latent_avg = None
# ckpt = torch.load(e4e_path, map_location='cpu')
# self.latent_avg = ckpt['latent_avg'].cuda()
# ckpt = {k[k.find(".")+1:]: v for k, v in ckpt['state_dict'].items() if "decoder" not in k}
# self.basic_encoder.load_state_dict(ckpt, strict=True)
def freeze_basic_encoder(self):
self.basic_encoder.eval() #Basic Encoder always in eval mode.
#No backprop to basic Encoder
for param in self.basic_encoder.parameters():
param.requires_grad = False
def forward(self, reals):
self.freeze_basic_encoder()
w, c = self.basic_encoder(reals)
w = w + self.latent_avg
highres_outs = {f"{self.out_res}x{self.out_res}": c} #{"gates": gates, "additions": additions}
return w, highres_outs
|