Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
from PIL import Image | |
import dlib | |
import numpy as np | |
import PIL | |
import PIL.Image | |
import scipy | |
import scipy.ndimage | |
class ImageProcessor(): | |
def __init__(self, predictor_path=None) -> None: | |
self.predictor = None | |
if predictor_path: | |
self.predictor = dlib.shape_predictor(predictor_path) | |
def preprocess_image(image, is_batch=True): | |
image = image.resize( (256, 256)) | |
image = np.asarray(image).transpose(2, 0, 1).astype(np.float32) # C,H,W -> H,W,C | |
image = torch.FloatTensor(image.copy()) | |
image = (image - 127.5) / 127.5 # Normalize | |
if not is_batch: | |
image = image.unsqueeze(0) | |
return image | |
""" | |
Input: A numpy image with shape NxCxHxW. | |
Output: Output image with NxHxWxC with values between 0-255 | |
""" | |
def postprocess_image(image, min_val=-1.0, max_val=1.0, is_batch=True): | |
image = image.astype(np.float64) | |
image = (image - min_val) * 255 / (max_val - min_val) | |
image = np.clip(image + 0.5, 0, 255).astype(np.uint8) | |
image = image.transpose(0, 2, 3, 1) | |
if not is_batch: | |
image = Image.fromarray(image[0]).resize((256,256)) | |
return image | |
""" | |
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) | |
author: lzhbrian (https://lzhbrian.me) | |
date: 2020.1.5 | |
note: code is heavily borrowed from | |
https://github.com/NVlabs/ffhq-dataset | |
http://dlib.net/face_landmark_detection.py.html | |
requirements: | |
apt install cmake | |
conda install Pillow numpy scipy | |
pip install dlib | |
# download face landmark model from: | |
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
""" | |
def get_landmark(self, image): | |
"""get landmark with dlib | |
:return: np.array shape=(68, 2) | |
""" | |
detector = dlib.get_frontal_face_detector() | |
# img = dlib.load_rgb_image(filepath) | |
img = np.asarray(image) | |
dets = detector(img, 1) | |
for k, d in enumerate(dets): | |
shape = self.predictor(img, d) | |
t = list(shape.parts()) | |
a = [] | |
for tt in t: | |
a.append([tt.x, tt.y]) | |
lm = np.array(a) | |
return lm | |
def align_face(self, img): | |
""" | |
:param image: PIL image | |
:return: PIL Image | |
""" | |
if self.predictor is None: | |
return img | |
lm = self.get_landmark(img) | |
lm_chin = lm[0: 17] # left-right | |
lm_eyebrow_left = lm[17: 22] # left-right | |
lm_eyebrow_right = lm[22: 27] # left-right | |
lm_nose = lm[27: 31] # top-down | |
lm_nostrils = lm[31: 36] # top-down | |
lm_eye_left = lm[36: 42] # left-clockwise | |
lm_eye_right = lm[42: 48] # left-clockwise | |
lm_mouth_outer = lm[48: 60] # left-clockwise | |
lm_mouth_inner = lm[60: 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
x /= np.hypot(*x) | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
qsize = np.hypot(*x) * 2 | |
# read image | |
# img = PIL.Image.open(filepath) | |
output_size = 512 | |
transform_size = 1024 | |
enable_padding = True | |
# Shrink. | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), | |
min(crop[3] + border, img.size[1])) | |
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
img = img.crop(crop) | |
quad -= crop[0:2] | |
# Pad. | |
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), | |
max(pad[3] - img.size[1] + border, 0)) | |
if enable_padding and max(pad) > border - 4: | |
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
h, w, _ = img.shape | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), | |
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) | |
blur = qsize * 0.02 | |
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
quad += pad[:2] | |
# Transform. | |
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | |
if output_size < transform_size: | |
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | |
# Save aligned image. | |
img.save('aligned.png') | |
return img | |