File size: 2,571 Bytes
746855d
 
3e802d7
746855d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc230a
 
 
 
 
 
 
746855d
7fcce9b
746855d
 
 
 
5cc230a
746855d
 
 
 
 
 
 
 
b2f8664
 
 
746855d
 
 
 
 
 
 
 
 
 
 
b2f8664
746855d
b2f8664
746855d
b2f8664
 
 
 
 
 
 
 
 
 
746855d
 
b2f8664
746855d
b2f8664
 
 
 
 
 
 
 
9ca6512
746855d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from __future__ import annotations

import shlex
import spaces

import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer
import hashlib
import os

from transformers import AutoModel, AutoProcessor
import torch
import sys
import subprocess
from PIL import Image

import time

# install packages for mamba
def install():
    print("Install personal packages", flush=True)
    subprocess.run(shlex.split("pip install causal_conv1d-1.2.0.post1-cp310-cp310-linux_x86_64.whl"))
    subprocess.run(shlex.split("pip install mamba_ssm-1.2.0.post1-cp310-cp310-linux_x86_64.whl"))

install()

from cobra import load
vlm = load("cobra+3b")

if torch.cuda.is_available():
    DEVICE = "cuda"
    DTYPE = torch.bfloat16
else:
    DEVICE = "cpu"
    DTYPE = torch.float32
vlm.to(DEVICE, dtype=DTYPE)

prompt_builder = vlm.get_prompt_builder()

@spaces.GPU
def bot_streaming(message, history, temperature, top_k, max_new_tokens):
    if len(history) == 0:
        prompt_builder.prompt, prompt_builder.turn_count = "", 0
    if message["files"]:
        image = message["files"][-1]["path"]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0])==tuple:
                image = hist[0][0]
  
    image = Image.open(image).convert("RGB")
    
    prompt_builder.add_turn(role="human", message=message['text'])
    prompt_text = prompt_builder.get_prompt()
    
    # Generate from the VLM
    with torch.no_grad():
        generated_text = vlm.generate(
            image,
            prompt_text,
            cg=True,
            do_sample=True,
            temperature=temperature,
            top_k=top_k,
            max_new_tokens=max_new_tokens,
        )
    prompt_builder.add_turn(role="gpt", message=generated_text)

    time.sleep(0.04)
    yield generated_text
    
    
demo = gr.ChatInterface(fn=bot_streaming, 
                        additional_inputs=[gr.Slider(0, 1, value=0.2, label="Temperature"),
                                           gr.Slider(1, 3, value=1, step=1, label="Top k"),
                                           gr.Slider(1, 2048, value=256, step=1, label="Max New Tokens")],
                        title="Cobra", 
                        description="Try [Cobra](https://huggingface.co/papers/2403.14520) in this demo. Upload an image and start chatting about it.",
                        stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True)