hanbinChen commited on
Commit
6e0faa9
·
1 Parent(s): a06ac21
Files changed (4) hide show
  1. .gitignore +2 -0
  2. README.md +8 -1
  3. app_ui.py +11 -11
  4. start.sh +8 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ __pycache__/*
2
+
README.md CHANGED
@@ -12,6 +12,10 @@ pinned: false
12
  # Medical Knowledge Graph Construction (medKGC)
13
 
14
  ## Overview
 
 
 
 
15
  medKGC is a medical text knowledge graph construction and review system. It supports entity recognition, relation extraction, and visualization of medical reports, providing a convenient review interface.
16
 
17
  ## Deployment
@@ -33,6 +37,9 @@ pip install -r requirements.txt
33
  streamlit run app.py
34
  ```
35
 
 
 
 
36
  ## Core Features
37
 
38
  ### 1. Data Processing
@@ -102,7 +109,7 @@ def find_relations_with_entities(entities, entities_data):
102
  ## TODO
103
  1. [ ] Add data export functionality
104
  2. [ ] Named Entity Recognition
105
- 1. [ ] 增加输入框
106
  2. [ ] 调用llms
107
  3. [ ] Relation Extraction
108
  1. [ ] Add relation editing functionality
 
12
  # Medical Knowledge Graph Construction (medKGC)
13
 
14
  ## Overview
15
+ A automated annotion tool using LLMs to help medical annotators annotate the input radiology reports.
16
+
17
+ 这个工具涉及了Named Entity Recognition,relation extraction, named entity normalization,最终结果会以知识图谱的形式输出。
18
+
19
  medKGC is a medical text knowledge graph construction and review system. It supports entity recognition, relation extraction, and visualization of medical reports, providing a convenient review interface.
20
 
21
  ## Deployment
 
37
  streamlit run app.py
38
  ```
39
 
40
+
41
+
42
+
43
  ## Core Features
44
 
45
  ### 1. Data Processing
 
109
  ## TODO
110
  1. [ ] Add data export functionality
111
  2. [ ] Named Entity Recognition
112
+ 1. [ ] 增加输入框
113
  2. [ ] 调用llms
114
  3. [ ] Relation Extraction
115
  1. [ ] Add relation editing functionality
app_ui.py CHANGED
@@ -7,10 +7,10 @@ from app_logic import *
7
  def display_entity_selections(selections):
8
  """Display entity selections in a grid layout"""
9
  st.subheader("Selected Entities:")
10
-
11
  # 使用columns来水平排列按钮
12
  cols = st.columns(4) # 每行4个按钮
13
-
14
  for i, entity in enumerate(selections):
15
  col_idx = i % 4
16
  with cols[col_idx]:
@@ -144,23 +144,23 @@ def handle_review_submission(selected_report, selections, entities_data):
144
 
145
  def setup_input_selection():
146
  """设置输入方式选择"""
147
- st.subheader("选择输入方式")
148
  input_method = st.radio(
149
- "请选择输入方式",
150
- ["从数据集选择", "手动输入文本"],
151
  key="input_method"
152
  )
153
-
154
- if input_method == "手动输入文本":
155
  user_text = st.text_area(
156
- "请输入放射学报告文本",
157
  height=200,
158
- placeholder="在此输入报告文本...",
159
  key="user_input_text"
160
  )
161
- if st.button("分析文本"):
162
  return {"type": "user_input", "text": user_text}
163
  else:
164
  return {"type": "dataset"}
165
-
166
  return None
 
7
  def display_entity_selections(selections):
8
  """Display entity selections in a grid layout"""
9
  st.subheader("Selected Entities:")
10
+
11
  # 使用columns来水平排列按钮
12
  cols = st.columns(4) # 每行4个按钮
13
+
14
  for i, entity in enumerate(selections):
15
  col_idx = i % 4
16
  with cols[col_idx]:
 
144
 
145
  def setup_input_selection():
146
  """设置输入方式选择"""
147
+ st.subheader("Select Input Method")
148
  input_method = st.radio(
149
+ "Select Input Method",
150
+ ["Select from Dataset", "Manual Text Input"],
151
  key="input_method"
152
  )
153
+
154
+ if input_method == "Manual Text Input":
155
  user_text = st.text_area(
156
+ "Please Input Radiology Report Text",
157
  height=200,
158
+ placeholder="Enter report text here...",
159
  key="user_input_text"
160
  )
161
+ if st.button("Analyze Text"):
162
  return {"type": "user_input", "text": user_text}
163
  else:
164
  return {"type": "dataset"}
165
+
166
  return None
start.sh ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env bash
2
+ # Source conda to enable 'conda activate'
3
+ source "$(conda info --base)/etc/profile.d/conda.sh"
4
+ conda activate medkgc
5
+ # Install dependencies
6
+ pip install -r requirements.txt
7
+ # Start the Streamlit app
8
+ streamlit run app.py