Spaces:
Sleeping
Sleeping
Commit
·
6e0faa9
1
Parent(s):
a06ac21
update
Browse files
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/*
|
2 |
+
|
README.md
CHANGED
@@ -12,6 +12,10 @@ pinned: false
|
|
12 |
# Medical Knowledge Graph Construction (medKGC)
|
13 |
|
14 |
## Overview
|
|
|
|
|
|
|
|
|
15 |
medKGC is a medical text knowledge graph construction and review system. It supports entity recognition, relation extraction, and visualization of medical reports, providing a convenient review interface.
|
16 |
|
17 |
## Deployment
|
@@ -33,6 +37,9 @@ pip install -r requirements.txt
|
|
33 |
streamlit run app.py
|
34 |
```
|
35 |
|
|
|
|
|
|
|
36 |
## Core Features
|
37 |
|
38 |
### 1. Data Processing
|
@@ -102,7 +109,7 @@ def find_relations_with_entities(entities, entities_data):
|
|
102 |
## TODO
|
103 |
1. [ ] Add data export functionality
|
104 |
2. [ ] Named Entity Recognition
|
105 |
-
1. [ ] 增加输入框
|
106 |
2. [ ] 调用llms
|
107 |
3. [ ] Relation Extraction
|
108 |
1. [ ] Add relation editing functionality
|
|
|
12 |
# Medical Knowledge Graph Construction (medKGC)
|
13 |
|
14 |
## Overview
|
15 |
+
A automated annotion tool using LLMs to help medical annotators annotate the input radiology reports.
|
16 |
+
|
17 |
+
这个工具涉及了Named Entity Recognition,relation extraction, named entity normalization,最终结果会以知识图谱的形式输出。
|
18 |
+
|
19 |
medKGC is a medical text knowledge graph construction and review system. It supports entity recognition, relation extraction, and visualization of medical reports, providing a convenient review interface.
|
20 |
|
21 |
## Deployment
|
|
|
37 |
streamlit run app.py
|
38 |
```
|
39 |
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
## Core Features
|
44 |
|
45 |
### 1. Data Processing
|
|
|
109 |
## TODO
|
110 |
1. [ ] Add data export functionality
|
111 |
2. [ ] Named Entity Recognition
|
112 |
+
1. [ ] 增加输入框
|
113 |
2. [ ] 调用llms
|
114 |
3. [ ] Relation Extraction
|
115 |
1. [ ] Add relation editing functionality
|
app_ui.py
CHANGED
@@ -7,10 +7,10 @@ from app_logic import *
|
|
7 |
def display_entity_selections(selections):
|
8 |
"""Display entity selections in a grid layout"""
|
9 |
st.subheader("Selected Entities:")
|
10 |
-
|
11 |
# 使用columns来水平排列按钮
|
12 |
cols = st.columns(4) # 每行4个按钮
|
13 |
-
|
14 |
for i, entity in enumerate(selections):
|
15 |
col_idx = i % 4
|
16 |
with cols[col_idx]:
|
@@ -144,23 +144,23 @@ def handle_review_submission(selected_report, selections, entities_data):
|
|
144 |
|
145 |
def setup_input_selection():
|
146 |
"""设置输入方式选择"""
|
147 |
-
st.subheader("
|
148 |
input_method = st.radio(
|
149 |
-
"
|
150 |
-
["
|
151 |
key="input_method"
|
152 |
)
|
153 |
-
|
154 |
-
if input_method == "
|
155 |
user_text = st.text_area(
|
156 |
-
"
|
157 |
height=200,
|
158 |
-
placeholder="
|
159 |
key="user_input_text"
|
160 |
)
|
161 |
-
if st.button("
|
162 |
return {"type": "user_input", "text": user_text}
|
163 |
else:
|
164 |
return {"type": "dataset"}
|
165 |
-
|
166 |
return None
|
|
|
7 |
def display_entity_selections(selections):
|
8 |
"""Display entity selections in a grid layout"""
|
9 |
st.subheader("Selected Entities:")
|
10 |
+
|
11 |
# 使用columns来水平排列按钮
|
12 |
cols = st.columns(4) # 每行4个按钮
|
13 |
+
|
14 |
for i, entity in enumerate(selections):
|
15 |
col_idx = i % 4
|
16 |
with cols[col_idx]:
|
|
|
144 |
|
145 |
def setup_input_selection():
|
146 |
"""设置输入方式选择"""
|
147 |
+
st.subheader("Select Input Method")
|
148 |
input_method = st.radio(
|
149 |
+
"Select Input Method",
|
150 |
+
["Select from Dataset", "Manual Text Input"],
|
151 |
key="input_method"
|
152 |
)
|
153 |
+
|
154 |
+
if input_method == "Manual Text Input":
|
155 |
user_text = st.text_area(
|
156 |
+
"Please Input Radiology Report Text",
|
157 |
height=200,
|
158 |
+
placeholder="Enter report text here...",
|
159 |
key="user_input_text"
|
160 |
)
|
161 |
+
if st.button("Analyze Text"):
|
162 |
return {"type": "user_input", "text": user_text}
|
163 |
else:
|
164 |
return {"type": "dataset"}
|
165 |
+
|
166 |
return None
|
start.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/env bash
|
2 |
+
# Source conda to enable 'conda activate'
|
3 |
+
source "$(conda info --base)/etc/profile.d/conda.sh"
|
4 |
+
conda activate medkgc
|
5 |
+
# Install dependencies
|
6 |
+
pip install -r requirements.txt
|
7 |
+
# Start the Streamlit app
|
8 |
+
streamlit run app.py
|