Spaces:
Running
Running
Commit
·
e81f16d
1
Parent(s):
1b1752f
kg done
Browse files- README.md +35 -7
- app.py +45 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -9,12 +9,40 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
13 |
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Medical Knowledge Graph Construction (medKGC)
|
13 |
|
14 |
+
## English Version
|
15 |
|
16 |
+
medKGC is a Streamlit-based application for medical text analysis and knowledge graph construction. It demonstrates the process of entity recognition and relation extraction from medical texts, visualizing the results in an interactive graph.
|
17 |
+
|
18 |
+
### Features:
|
19 |
+
1. Text Input: Users can input medical text for analysis.
|
20 |
+
2. Entity Recognition: The app identifies and highlights various medical entities such as diseases, procedures, anatomy, etc.
|
21 |
+
3. Relation Extraction: It extracts relationships between the identified entities.
|
22 |
+
4. Interactive Visualization: Utilizes streamlit-agraph to create an interactive graph representation of entities and their relationships.
|
23 |
+
5. Labeled Text Display: Shows the input text with highlighted entities using streamlit_text_label.
|
24 |
+
|
25 |
+
### How to Use:
|
26 |
+
1. Enter medical text in the provided text area.
|
27 |
+
2. Click "Recognize Entities" to process the text.
|
28 |
+
3. View the recognized entities, extracted relations, and the entity relationship graph.
|
29 |
+
|
30 |
+
Note: Currently, the app uses mock data for demonstration purposes. Integration with actual NLP models is planned for future development.
|
31 |
+
|
32 |
+
## 中文版本
|
33 |
+
|
34 |
+
medKGC 是一个基于 Streamlit 的医疗文本分析和知识图谱构建应用。它演示了从医疗文本中进行实体识别和关系提取的过程,并将结果以交互式图形可视化。
|
35 |
+
|
36 |
+
### 功能特点:
|
37 |
+
1. 文本输入:用户可以输入医疗文本进行分析。
|
38 |
+
2. 实体识别:应用程序识别并高亮显示各种医疗实体,如疾病、医疗程序、解剖结构等。
|
39 |
+
3. 关系提取:提取识别出的实体之间的关系。
|
40 |
+
4. 交互式可视化:使用 streamlit-agraph 创建实体及其关系的交互式图形表示。
|
41 |
+
5. 标记文本显示:使用 streamlit_text_label 显示带有高亮实体的输入文本。
|
42 |
+
|
43 |
+
### 使用方法:
|
44 |
+
1. 在提供的文本区域输入医疗文本。
|
45 |
+
2. 点击"识别实体"按钮处理文本。
|
46 |
+
3. 查看识别出的实体、提取的关系以及实体关系图。
|
47 |
+
|
48 |
+
注意:目前,应用程序使用模拟数据进行演示。未来开发计划将集成实际的自然语言处理模型。
|
app.py
CHANGED
@@ -1,6 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
from streamlit_text_label import label_select, Selection
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def mock_entity_recognition(text):
|
6 |
# Simulate entity recognition functionality
|
@@ -18,6 +27,31 @@ def mock_entity_recognition(text):
|
|
18 |
return entities
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def main():
|
22 |
st.title("Medical Text Entity Recognition")
|
23 |
|
@@ -41,6 +75,17 @@ def main():
|
|
41 |
for entity in entities:
|
42 |
st.write(f"{entity.text} ({entity.labels[0]})")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from streamlit_text_label import label_select, Selection
|
3 |
+
from streamlit_agraph import agraph, Node, Edge, Config
|
4 |
|
5 |
+
# Import Relation class
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class Relation:
|
10 |
+
source: Selection
|
11 |
+
target: Selection
|
12 |
+
label: str
|
13 |
|
14 |
def mock_entity_recognition(text):
|
15 |
# Simulate entity recognition functionality
|
|
|
27 |
return entities
|
28 |
|
29 |
|
30 |
+
def mock_relation_extraction(entities):
|
31 |
+
# Simulate relation extraction functionality
|
32 |
+
relations = [
|
33 |
+
Relation(source=entities[0],
|
34 |
+
target=entities[1], label="DISEASE_CAUSE"),
|
35 |
+
Relation(source=entities[1], target=entities[2],
|
36 |
+
label="PROCEDURE_EFFECT"),
|
37 |
+
Relation(source=entities[2], target=entities[3], label="EXAM_RESULT"),
|
38 |
+
Relation(source=entities[3], target=entities[4],
|
39 |
+
label="SEVERITY_LEVEL"),
|
40 |
+
Relation(source=entities[4], target=entities[5],
|
41 |
+
label="ANATOMY_LOCATION"),
|
42 |
+
]
|
43 |
+
|
44 |
+
return relations
|
45 |
+
|
46 |
+
|
47 |
+
def create_graph(entities, relations):
|
48 |
+
nodes = [Node(id=e.text, label=e.text, size=25, color=f"#{hash(e.labels[0]) % 0xFFFFFF:06x}") for e in entities]
|
49 |
+
edges = [Edge(source=r.source.text, target=r.target.text, label=r.label) for r in relations]
|
50 |
+
|
51 |
+
config = Config(width=750, height=500, directed=True, physics=True, hierarchical=False)
|
52 |
+
return agraph(nodes=nodes, edges=edges, config=config)
|
53 |
+
|
54 |
+
|
55 |
def main():
|
56 |
st.title("Medical Text Entity Recognition")
|
57 |
|
|
|
75 |
for entity in entities:
|
76 |
st.write(f"{entity.text} ({entity.labels[0]})")
|
77 |
|
78 |
+
# 4. Call the simulated relation extraction function
|
79 |
+
relations = mock_relation_extraction(entities)
|
80 |
+
|
81 |
+
# 5. Display relations
|
82 |
+
st.subheader("Extracted Relations:")
|
83 |
+
for relation in relations:
|
84 |
+
st.write(f"{relation.source.text} --{relation.label}--> {relation.target.text}")
|
85 |
+
|
86 |
+
# 6. Create and display graph using streamlit-agraph
|
87 |
+
st.subheader("Entity Relationship Graph:")
|
88 |
+
create_graph(entities, relations)
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
main()
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
streamlit
|
2 |
streamlit_text_label
|
|
|
|
1 |
streamlit
|
2 |
streamlit_text_label
|
3 |
+
streamlit-agraph
|