File size: 1,749 Bytes
97a3ebb
 
 
 
 
 
 
 
 
db2e21a
 
e1e2d64
 
97a3ebb
 
 
db2e21a
 
97a3ebb
 
42ce24e
 
97a3ebb
42ce24e
 
97a3ebb
 
 
 
 
 
 
 
c567676
97a3ebb
 
 
 
 
 
42ce24e
97a3ebb
 
 
42ce24e
97a3ebb
ef005a1
97a3ebb
ef005a1
 
97a3ebb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
import spaces
import torch

import transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "ModularityAI/gemma-2b-datascience-it-raft"
tokenizer_name = "google/gemma-2b-it"

model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.bfloat16,device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name,device_map='cuda')

pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)

def format_test_question(q):
    return f"<bos><start_of_turn>user {q} <end_of_turn>model "
@spaces.GPU
def chat_function(message, history,max_new_tokens,temperature):
    prompt = format_test_question(message)
    print(prompt)
    temp = temperature + 0.1
    outputs = pipeline(
        prompt,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temp,
    )
    print(outputs)
    return outputs[0]["generated_text"][len(prompt):]

gr.ChatInterface(
    chat_function,
    chatbot=gr.Chatbot(height=400),
    textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
    title="Gemma 2B Data Science QA RAFT Demo",
    description="""
    This space is dedicated for chatting with Gemma 2B Finetuned for Data Science QA using RAFT. Find this model here: https://huggingface.co/ModularityAI/gemma-2b-datascience-it-raft
    Feel free to play with customization in the "Additional Inputs".
    Fine tune Notebook: https://www.kaggle.com/code/hanzlajavaid/gemma-finetuning-raft-technique
    """,
    theme="Soft",
    additional_inputs=[
        gr.Slider(512, 4096, value=1024,label="Max New Tokens"),
        gr.Slider(0, 1,value=0.5 ,label="Temperature")
    ]
).launch()