mjavaid
first commit
2649daa
import spaces
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
import os
hf_token = os.environ.get("HF_TOKEN")
model_id = "CohereForAI/aya-vision-8b"
# Load the model and processor on startup.
try:
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.float16, use_auth_token=hf_token
)
model_status = "Model loaded successfully!"
except Exception as e:
processor = None
model = None
model_status = (
f"Error loading model: {e}\nMake sure to install the correct version of transformers with: "
"pip install 'git+https://github.com/huggingface/[email protected]'"
)
@spaces.GPU
def process_image_and_prompt(uploaded_image, image_url, prompt, temperature=0.3, max_tokens=300):
global processor, model
if processor is None or model is None:
return "Model failed to load. Please check the logs."
# Determine which image input to use:
if uploaded_image:
# If an image is uploaded, use the image directly.
messages = [{
"role": "user",
"content": [
{"type": "image", "image": uploaded_image},
{"type": "text", "text": prompt},
],
}]
elif image_url and image_url.strip():
# Otherwise, use the provided image URL.
img_url = image_url.strip()
messages = [{
"role": "user",
"content": [
{"type": "image", "url": img_url},
{"type": "text", "text": prompt},
],
}]
else:
return "Please provide either an image upload or an image URL."
try:
inputs = processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=int(max_tokens),
do_sample=True,
temperature=float(temperature),
)
response = processor.tokenizer.decode(
gen_tokens[0][inputs.input_ids.shape[1]:],
skip_special_tokens=True
)
return response
except Exception as e:
return f"Error generating response: {e}"
# Example inputs for testing.
examples = [
[None, "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=", "What landmark is shown in this image?", 0.3, 300],
[None, "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium", "What does the text in this image say?", 0.3, 300],
[None, "https://upload.wikimedia.org/wikipedia/commons/d/da/The_Parthenon_in_Athens.jpg", "Describe esta imagen en español", 0.3, 300]
]
# Build the Gradio interface.
with gr.Blocks(title="Aya Vision 8B Demo") as demo:
gr.Markdown("# Aya Vision 8B Model Demo")
gr.Markdown(
"""
This app demonstrates the Aya Vision 8B model. You can either upload an image or provide an image URL. Enter a prompt along with the image.
"""
)
gr.Markdown(f"**Model Status:** {model_status}")
gr.Markdown("### Provide an Image")
with gr.Tab("Upload Image"):
# Using type="filepath" returns the local file path which is then passed directly.
image_upload = gr.Image(label="Upload Image", type="filepath")
with gr.Tab("Image URL"):
image_url_input = gr.Textbox(label="Image URL", placeholder="Enter a direct image URL")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=3)
with gr.Accordion("Generation Settings", open=False):
temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.3, label="Temperature")
max_tokens_slider = gr.Slider(minimum=50, maximum=1000, step=50, value=300, label="Max Tokens")
generate_btn = gr.Button("Generate Response", variant="primary")
output = gr.Textbox(label="Model Response", lines=10)
gr.Markdown("### Examples")
gr.Examples(
examples=examples,
inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider],
outputs=output,
fn=process_image_and_prompt
)
def generate_response(uploaded_image, image_url, prompt, temperature, max_tokens):
return process_image_and_prompt(uploaded_image, image_url, prompt, temperature, max_tokens)
generate_btn.click(
generate_response,
inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider],
outputs=output
)
if __name__ == "__main__":
demo.launch()