Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
import os | |
hf_token = os.environ.get("HF_TOKEN") | |
model_id = "CohereForAI/aya-vision-8b" | |
# Load the model and processor on startup. | |
try: | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = AutoModelForImageTextToText.from_pretrained( | |
model_id, device_map="auto", torch_dtype=torch.float16, use_auth_token=hf_token | |
) | |
model_status = "Model loaded successfully!" | |
except Exception as e: | |
processor = None | |
model = None | |
model_status = ( | |
f"Error loading model: {e}\nMake sure to install the correct version of transformers with: " | |
"pip install 'git+https://github.com/huggingface/[email protected]'" | |
) | |
def process_image_and_prompt(uploaded_image, image_url, prompt, temperature=0.3, max_tokens=300): | |
global processor, model | |
if processor is None or model is None: | |
return "Model failed to load. Please check the logs." | |
# Determine which image input to use: | |
if uploaded_image: | |
# If an image is uploaded, use the image directly. | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": uploaded_image}, | |
{"type": "text", "text": prompt}, | |
], | |
}] | |
elif image_url and image_url.strip(): | |
# Otherwise, use the provided image URL. | |
img_url = image_url.strip() | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "url": img_url}, | |
{"type": "text", "text": prompt}, | |
], | |
}] | |
else: | |
return "Please provide either an image upload or an image URL." | |
try: | |
inputs = processor.apply_chat_template( | |
messages, | |
padding=True, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt" | |
).to(model.device) | |
gen_tokens = model.generate( | |
**inputs, | |
max_new_tokens=int(max_tokens), | |
do_sample=True, | |
temperature=float(temperature), | |
) | |
response = processor.tokenizer.decode( | |
gen_tokens[0][inputs.input_ids.shape[1]:], | |
skip_special_tokens=True | |
) | |
return response | |
except Exception as e: | |
return f"Error generating response: {e}" | |
# Example inputs for testing. | |
examples = [ | |
[None, "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=", "What landmark is shown in this image?", 0.3, 300], | |
[None, "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium", "What does the text in this image say?", 0.3, 300], | |
[None, "https://upload.wikimedia.org/wikipedia/commons/d/da/The_Parthenon_in_Athens.jpg", "Describe esta imagen en español", 0.3, 300] | |
] | |
# Build the Gradio interface. | |
with gr.Blocks(title="Aya Vision 8B Demo") as demo: | |
gr.Markdown("# Aya Vision 8B Model Demo") | |
gr.Markdown( | |
""" | |
This app demonstrates the Aya Vision 8B model. You can either upload an image or provide an image URL. Enter a prompt along with the image. | |
""" | |
) | |
gr.Markdown(f"**Model Status:** {model_status}") | |
gr.Markdown("### Provide an Image") | |
with gr.Tab("Upload Image"): | |
# Using type="filepath" returns the local file path which is then passed directly. | |
image_upload = gr.Image(label="Upload Image", type="filepath") | |
with gr.Tab("Image URL"): | |
image_url_input = gr.Textbox(label="Image URL", placeholder="Enter a direct image URL") | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=3) | |
with gr.Accordion("Generation Settings", open=False): | |
temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.3, label="Temperature") | |
max_tokens_slider = gr.Slider(minimum=50, maximum=1000, step=50, value=300, label="Max Tokens") | |
generate_btn = gr.Button("Generate Response", variant="primary") | |
output = gr.Textbox(label="Model Response", lines=10) | |
gr.Markdown("### Examples") | |
gr.Examples( | |
examples=examples, | |
inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider], | |
outputs=output, | |
fn=process_image_and_prompt | |
) | |
def generate_response(uploaded_image, image_url, prompt, temperature, max_tokens): | |
return process_image_and_prompt(uploaded_image, image_url, prompt, temperature, max_tokens) | |
generate_btn.click( | |
generate_response, | |
inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |