Spaces:
Running
on
Zero
Running
on
Zero
mjavaid
commited on
Commit
·
38746a1
1
Parent(s):
28691d0
first commit
Browse files
app.py
CHANGED
@@ -2,13 +2,12 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
5 |
-
import requests
|
6 |
import os
|
7 |
|
8 |
hf_token = os.environ.get("HF_TOKEN")
|
9 |
model_id = "CohereForAI/aya-vision-8b"
|
10 |
|
11 |
-
# Load the model and processor
|
12 |
try:
|
13 |
processor = AutoProcessor.from_pretrained(model_id)
|
14 |
model = AutoModelForImageTextToText.from_pretrained(
|
@@ -30,18 +29,18 @@ def process_image_and_prompt(uploaded_image, image_url, prompt, temperature=0.3,
|
|
30 |
if processor is None or model is None:
|
31 |
return "Model failed to load. Please check the logs."
|
32 |
|
33 |
-
# Determine which image to use:
|
34 |
-
# If an image is uploaded,
|
35 |
-
if uploaded_image
|
36 |
-
#
|
37 |
-
|
38 |
-
img_url = uploaded_image if uploaded_image.startswith("http") else f"/file/{uploaded_image}"
|
39 |
elif image_url and image_url.strip():
|
40 |
img_url = image_url.strip()
|
41 |
else:
|
42 |
return "Please provide either an image upload or an image URL."
|
43 |
-
|
44 |
# Build the message using the Aya Vision chat template.
|
|
|
45 |
messages = [
|
46 |
{
|
47 |
"role": "user",
|
@@ -61,7 +60,7 @@ def process_image_and_prompt(uploaded_image, image_url, prompt, temperature=0.3,
|
|
61 |
return_dict=True,
|
62 |
return_tensors="pt"
|
63 |
).to(model.device)
|
64 |
-
|
65 |
gen_tokens = model.generate(
|
66 |
**inputs,
|
67 |
max_new_tokens=int(max_tokens),
|
@@ -87,53 +86,45 @@ examples = [
|
|
87 |
# Build the Gradio interface.
|
88 |
with gr.Blocks(title="Aya Vision 8B Demo") as demo:
|
89 |
gr.Markdown("# Aya Vision 8B Model Demo")
|
90 |
-
gr.Markdown(
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
Upload an image or provide a URL, and enter a prompt to get started!
|
99 |
-
""")
|
100 |
-
|
101 |
-
# Display model loading status.
|
102 |
gr.Markdown(f"**Model Status:** {model_status}")
|
103 |
-
|
104 |
-
gr.Markdown("### Provide an
|
105 |
with gr.Tab("Upload Image"):
|
106 |
-
#
|
107 |
-
|
108 |
with gr.Tab("Image URL"):
|
109 |
-
image_url_input = gr.Textbox(label="Image URL", placeholder="Enter a
|
110 |
|
111 |
-
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt
|
112 |
|
113 |
with gr.Accordion("Generation Settings", open=False):
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
generate_button = gr.Button("Generate Response", variant="primary")
|
118 |
|
119 |
-
|
120 |
-
|
121 |
|
122 |
gr.Markdown("### Examples")
|
123 |
gr.Examples(
|
124 |
examples=examples,
|
125 |
-
inputs=[
|
126 |
outputs=output,
|
127 |
fn=process_image_and_prompt
|
128 |
)
|
129 |
|
130 |
-
# Determine which image input to use when generating the response.
|
131 |
def generate_response(uploaded_image, image_url, prompt, temperature, max_tokens):
|
132 |
return process_image_and_prompt(uploaded_image, image_url, prompt, temperature, max_tokens)
|
133 |
|
134 |
-
|
135 |
generate_response,
|
136 |
-
inputs=[
|
137 |
outputs=output
|
138 |
)
|
139 |
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
|
5 |
import os
|
6 |
|
7 |
hf_token = os.environ.get("HF_TOKEN")
|
8 |
model_id = "CohereForAI/aya-vision-8b"
|
9 |
|
10 |
+
# Load the model and processor on startup.
|
11 |
try:
|
12 |
processor = AutoProcessor.from_pretrained(model_id)
|
13 |
model = AutoModelForImageTextToText.from_pretrained(
|
|
|
29 |
if processor is None or model is None:
|
30 |
return "Model failed to load. Please check the logs."
|
31 |
|
32 |
+
# Determine which image input to use:
|
33 |
+
# If an image is uploaded, convert its file path to a URL.
|
34 |
+
if uploaded_image:
|
35 |
+
# Gradio returns a file path; if it doesn't start with "http", prefix it so that it is served.
|
36 |
+
img_url = uploaded_image if str(uploaded_image).startswith("http") else f"/file/{uploaded_image}"
|
|
|
37 |
elif image_url and image_url.strip():
|
38 |
img_url = image_url.strip()
|
39 |
else:
|
40 |
return "Please provide either an image upload or an image URL."
|
41 |
+
|
42 |
# Build the message using the Aya Vision chat template.
|
43 |
+
# Note: Aya Vision requires the image to be sent as a URL.
|
44 |
messages = [
|
45 |
{
|
46 |
"role": "user",
|
|
|
60 |
return_dict=True,
|
61 |
return_tensors="pt"
|
62 |
).to(model.device)
|
63 |
+
|
64 |
gen_tokens = model.generate(
|
65 |
**inputs,
|
66 |
max_new_tokens=int(max_tokens),
|
|
|
86 |
# Build the Gradio interface.
|
87 |
with gr.Blocks(title="Aya Vision 8B Demo") as demo:
|
88 |
gr.Markdown("# Aya Vision 8B Model Demo")
|
89 |
+
gr.Markdown(
|
90 |
+
"""
|
91 |
+
This app demonstrates the C4AI Aya Vision 8B model, which requires an image URL as input.
|
92 |
+
You can either upload an image (it will be served as a URL) or provide a direct image URL.
|
93 |
+
Enter a prompt along with the image to get started!
|
94 |
+
"""
|
95 |
+
)
|
|
|
|
|
|
|
|
|
|
|
96 |
gr.Markdown(f"**Model Status:** {model_status}")
|
97 |
+
|
98 |
+
gr.Markdown("### Provide an Image")
|
99 |
with gr.Tab("Upload Image"):
|
100 |
+
# Using type="filepath" returns the local file path which is then converted into a URL.
|
101 |
+
image_upload = gr.Image(label="Upload Image", type="filepath")
|
102 |
with gr.Tab("Image URL"):
|
103 |
+
image_url_input = gr.Textbox(label="Image URL", placeholder="Enter a direct image URL")
|
104 |
|
105 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=3)
|
106 |
|
107 |
with gr.Accordion("Generation Settings", open=False):
|
108 |
+
temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.3, label="Temperature")
|
109 |
+
max_tokens_slider = gr.Slider(minimum=50, maximum=1000, step=50, value=300, label="Max Tokens")
|
|
|
|
|
110 |
|
111 |
+
generate_btn = gr.Button("Generate Response", variant="primary")
|
112 |
+
output = gr.Textbox(label="Model Response", lines=10)
|
113 |
|
114 |
gr.Markdown("### Examples")
|
115 |
gr.Examples(
|
116 |
examples=examples,
|
117 |
+
inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider],
|
118 |
outputs=output,
|
119 |
fn=process_image_and_prompt
|
120 |
)
|
121 |
|
|
|
122 |
def generate_response(uploaded_image, image_url, prompt, temperature, max_tokens):
|
123 |
return process_image_and_prompt(uploaded_image, image_url, prompt, temperature, max_tokens)
|
124 |
|
125 |
+
generate_btn.click(
|
126 |
generate_response,
|
127 |
+
inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider],
|
128 |
outputs=output
|
129 |
)
|
130 |
|