test_comparison / app.py
hanzla javaid
test
02b0952
raw
history blame
2.42 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
# Dictionary to store loaded models and tokenizers
loaded_models = {}
# List of available models (update with your preferred models)
models = ["gpt2", "gpt2-medium", "gpt2-large", "EleutherAI/gpt-neo-1.3B"]
def load_model(model_name):
if model_name not in loaded_models:
print(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu")
loaded_models[model_name] = (model, tokenizer)
return loaded_models[model_name]
@spaces.GPU
def get_model_response(model_name, message):
model, tokenizer = load_model(model_name)
inputs = tokenizer(message, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_length=100, num_return_sequences=1, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def chat(message, history, model1, model2):
response1 = get_model_response(model1, message)
response2 = get_model_response(model2, message)
return [(message, f"{model1}: {response1}\n\n{model2}: {response2}")]
def vote(direction, history):
if history:
last_interaction = history[-1]
vote_text = f"\n\nUser voted: {'πŸ‘' if direction == 'up' else 'πŸ‘Ž'}"
updated_interaction = (last_interaction[0], last_interaction[1] + vote_text)
return history[:-1] + [updated_interaction]
return history
with gr.Blocks() as demo:
gr.Markdown("# Hugging Face Model Comparison Chat")
with gr.Row():
model1_dropdown = gr.Dropdown(choices=models, label="Model 1", value=models[0])
model2_dropdown = gr.Dropdown(choices=models, label="Model 2", value=models[1])
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Your message")
clear = gr.Button("Clear")
with gr.Row():
upvote = gr.Button("πŸ‘ Upvote")
downvote = gr.Button("πŸ‘Ž Downvote")
msg.submit(chat, [msg, chatbot, model1_dropdown, model2_dropdown], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
upvote.click(vote, ["up", chatbot], chatbot)
downvote.click(vote, ["down", chatbot], chatbot)
if __name__ == "__main__":
demo.launch()