Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import clip
|
4 |
+
import pandas as pd
|
5 |
+
import hashlib
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
import onnxruntime as ort
|
10 |
+
import requests
|
11 |
+
|
12 |
+
def _binary_array_to_hex(arr):
|
13 |
+
bit_string = ''.join(str(b) for b in 1 * arr.flatten())
|
14 |
+
width = int(np.ceil(len(bit_string) / 4))
|
15 |
+
return '{:0>{width}x}'.format(int(bit_string, 2), width=width)
|
16 |
+
|
17 |
+
def phashstr(image, hash_size=8, highfreq_factor=4):
|
18 |
+
if hash_size < 2:
|
19 |
+
raise ValueError('Hash size must be greater than or equal to 2')
|
20 |
+
import scipy.fftpack
|
21 |
+
img_size = hash_size * highfreq_factor
|
22 |
+
image = image.convert('L').resize((img_size, img_size), Image.Resampling.LANCZOS)
|
23 |
+
pixels = np.asarray(image)
|
24 |
+
dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1)
|
25 |
+
dctlowfreq = dct[:hash_size, :hash_size]
|
26 |
+
med = np.median(dctlowfreq)
|
27 |
+
diff = dctlowfreq > med
|
28 |
+
return _binary_array_to_hex(diff.flatten())
|
29 |
+
|
30 |
+
def normalized(a, axis=-1, order=2):
|
31 |
+
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
|
32 |
+
l2[l2 == 0] = 1
|
33 |
+
return a / np.expand_dims(l2, axis)
|
34 |
+
|
35 |
+
def convert_numpy_types(data):
|
36 |
+
if isinstance(data, dict):
|
37 |
+
return {key: convert_numpy_types(value) for key, value in data.items()}
|
38 |
+
elif isinstance(data, list):
|
39 |
+
return [convert_numpy_types(item) for item in data]
|
40 |
+
elif isinstance(data, np.float64):
|
41 |
+
return float(data)
|
42 |
+
elif isinstance(data, np.int64):
|
43 |
+
return int(data)
|
44 |
+
else:
|
45 |
+
return data
|
46 |
+
|
47 |
+
def download_onnx_model(url, filename):
|
48 |
+
response = requests.get(url)
|
49 |
+
with open(filename, 'wb') as f:
|
50 |
+
f.write(response.content)
|
51 |
+
|
52 |
+
def predict(image):
|
53 |
+
onnx_url = "https://huggingface.co/haor/aesthetics/resolve/main/aesthetic_score_mlp.onnx"
|
54 |
+
onnx_path = "aesthetic_score_mlp.onnx"
|
55 |
+
download_onnx_model(onnx_url, onnx_path)
|
56 |
+
|
57 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
58 |
+
ort_session = ort.InferenceSession(onnx_path)
|
59 |
+
|
60 |
+
model2, preprocess = clip.load("ViT-L/14", device=device)
|
61 |
+
image = Image.fromarray(image)
|
62 |
+
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
63 |
+
laplacian_variance = cv2.Laplacian(image_np, cv2.CV_64F).var()
|
64 |
+
phash = phashstr(image)
|
65 |
+
md5 = hashlib.md5(image.tobytes()).hexdigest()
|
66 |
+
sha1 = hashlib.sha1(image.tobytes()).hexdigest()
|
67 |
+
|
68 |
+
inputs = preprocess(image).unsqueeze(0).to(device)
|
69 |
+
with torch.no_grad():
|
70 |
+
img_emb = model2.encode_image(inputs)
|
71 |
+
img_emb = normalized(img_emb.cpu().numpy())
|
72 |
+
|
73 |
+
ort_inputs = {ort_session.get_inputs()[0].name: img_emb.astype(np.float32)}
|
74 |
+
ort_outs = ort_session.run(None, ort_inputs)
|
75 |
+
prediction = ort_outs[0].item()
|
76 |
+
|
77 |
+
result = {
|
78 |
+
"clip_aesthetic": prediction,
|
79 |
+
"phash": phash,
|
80 |
+
"md5": md5,
|
81 |
+
"sha1": sha1,
|
82 |
+
"laplacian_variance": laplacian_variance
|
83 |
+
}
|
84 |
+
return convert_numpy_types(result)
|
85 |
+
|
86 |
+
title = "CLIP Aesthetic Score"
|
87 |
+
description = "Upload an image to predict its aesthetic score using the CLIP model and calculate other image metrics."
|
88 |
+
|
89 |
+
gr.Interface(
|
90 |
+
fn=predict,
|
91 |
+
inputs=gr.Image(type="numpy"),
|
92 |
+
outputs=gr.JSON(label="Result"),
|
93 |
+
title=title,
|
94 |
+
description=description,
|
95 |
+
examples=[["example1.jpg"], ["example2.jpg"]]
|
96 |
+
).launch()
|