HAOUARI Noureddine
commited on
Commit
·
11fb0d6
1
Parent(s):
d952b7c
better version
Browse files- app.py +79 -14
- requirements.txt +0 -0
app.py
CHANGED
@@ -3,43 +3,108 @@ from concurrent.futures import ThreadPoolExecutor
|
|
3 |
import streamlit as st
|
4 |
import io
|
5 |
from anthropic import Anthropic
|
|
|
|
|
6 |
client = Anthropic()
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
def convert_pdf_to_text(pdf_file_data, file_name):
|
13 |
text = "\n---\n"
|
14 |
text += f"file name: {file_name}\n content: \n"
|
15 |
pdf_reader = PdfReader(pdf_file_data)
|
16 |
-
# Extract all text at once
|
17 |
text += "".join([page.extract_text() for page in pdf_reader.pages])
|
18 |
text += "\n---\n"
|
19 |
return text
|
20 |
|
21 |
|
22 |
def pdf_to_text(pdf_files_data, file_names):
|
23 |
-
# Create a ThreadPoolExecutor to run the conversion in parallel
|
24 |
with ThreadPoolExecutor() as executor:
|
25 |
-
# Use the executor to map the convert_pdf_to_text function over all the pdf_files_data
|
26 |
results = executor.map(convert_pdf_to_text, pdf_files_data, file_names)
|
27 |
-
|
28 |
return results
|
29 |
|
30 |
|
31 |
-
st.title("PDF
|
32 |
-
st.markdown(
|
|
|
|
|
33 |
|
34 |
-
uploaded_files = st.file_uploader(
|
35 |
"Upload PDF files", type="pdf", accept_multiple_files=True)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
if uploaded_files:
|
38 |
pdf_files_data = [io.BytesIO(uploaded_file.read())
|
39 |
for uploaded_file in uploaded_files]
|
40 |
file_names = [uploaded_file.name for uploaded_file in uploaded_files]
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import streamlit as st
|
4 |
import io
|
5 |
from anthropic import Anthropic
|
6 |
+
import tiktoken
|
7 |
+
import re
|
8 |
client = Anthropic()
|
9 |
+
encoding_openAI = tiktoken.get_encoding("cl100k_base")
|
10 |
+
encoding_anthropic = client.get_tokenizer()
|
11 |
|
12 |
+
# Model choice and max tokens input
|
13 |
+
model_choice = st.sidebar.selectbox("Choose a Model", ["OpenAI", "Anthropic"])
|
14 |
+
max_tokens = st.sidebar.number_input(
|
15 |
+
"Max number of tokens per chunk", min_value=100, value=8000)
|
16 |
+
|
17 |
+
|
18 |
+
def clean_text_content(text):
|
19 |
+
# Keep only English letters, numbers, spaces, line breaks, and common punctuation/symbols
|
20 |
+
cleaned_text = re.sub(r'[^a-zA-Z0-9 \r\n.,;!?()\-\'\"&+:%$#@*]', '', text)
|
21 |
+
return cleaned_text
|
22 |
+
|
23 |
+
|
24 |
+
def create_chunks(text, n, tokenizer_name):
|
25 |
+
"""Returns successive n-sized chunks from provided text."""
|
26 |
+
tokenizer = encoding_openAI if tokenizer_name == "OpenAI" else encoding_anthropic
|
27 |
+
encoded = tokenizer.encode(text)
|
28 |
+
|
29 |
+
# Check for type of token and adapt accordingly
|
30 |
+
tokens = encoded.ids if hasattr(encoded, "ids") else encoded
|
31 |
+
|
32 |
+
i = 0
|
33 |
+
while i < len(tokens):
|
34 |
+
# Find the nearest end of sentence within a range of 0.5 * n and 1.5 * n tokens
|
35 |
+
j = min(i + int(1.5 * n), len(tokens))
|
36 |
+
while j > i + int(0.5 * n):
|
37 |
+
# Decode the tokens and check for full stop or newline
|
38 |
+
chunk = tokenizer.decode(tokens[i:j])
|
39 |
+
if chunk.endswith(".") or chunk.endswith("\n"):
|
40 |
+
break
|
41 |
+
j -= 1
|
42 |
+
# If no end of sentence found, use n tokens as the chunk size
|
43 |
+
if j == i + int(0.5 * n):
|
44 |
+
j = min(i + n, len(tokens))
|
45 |
+
yield tokens[i:j]
|
46 |
+
i = j
|
47 |
|
48 |
|
49 |
def convert_pdf_to_text(pdf_file_data, file_name):
|
50 |
text = "\n---\n"
|
51 |
text += f"file name: {file_name}\n content: \n"
|
52 |
pdf_reader = PdfReader(pdf_file_data)
|
|
|
53 |
text += "".join([page.extract_text() for page in pdf_reader.pages])
|
54 |
text += "\n---\n"
|
55 |
return text
|
56 |
|
57 |
|
58 |
def pdf_to_text(pdf_files_data, file_names):
|
|
|
59 |
with ThreadPoolExecutor() as executor:
|
|
|
60 |
results = executor.map(convert_pdf_to_text, pdf_files_data, file_names)
|
|
|
61 |
return results
|
62 |
|
63 |
|
64 |
+
st.title("PDF splitter")
|
65 |
+
st.markdown(
|
66 |
+
"Upload PDF files and get their content in text format splitted based on the max tokens.")
|
67 |
+
|
68 |
|
69 |
+
uploaded_files = st.sidebar.file_uploader(
|
70 |
"Upload PDF files", type="pdf", accept_multiple_files=True)
|
71 |
|
72 |
+
clean_text = st.sidebar.checkbox("Clean text before encoding and splitting?")
|
73 |
+
|
74 |
+
# Check if the text is not already in session_state
|
75 |
+
if "text_content" not in st.session_state:
|
76 |
+
st.session_state.text_content = ""
|
77 |
+
|
78 |
if uploaded_files:
|
79 |
pdf_files_data = [io.BytesIO(uploaded_file.read())
|
80 |
for uploaded_file in uploaded_files]
|
81 |
file_names = [uploaded_file.name for uploaded_file in uploaded_files]
|
82 |
+
|
83 |
+
if st.sidebar.button('Convert'):
|
84 |
+
converting_message = st.sidebar.text("Converting PDFs...")
|
85 |
+
converted_text = "\n".join(pdf_to_text(pdf_files_data, file_names))
|
86 |
+
st.session_state.text_content += converted_text
|
87 |
+
converting_message.empty()
|
88 |
+
|
89 |
+
if clean_text:
|
90 |
+
st.session_state.text_content = clean_text_content(
|
91 |
+
st.session_state.text_content)
|
92 |
+
|
93 |
+
chunks_generator = create_chunks(
|
94 |
+
st.session_state.text_content, max_tokens, model_choice)
|
95 |
+
chunks = [encoding_openAI.decode(chunk_tokens) if model_choice == "OpenAI" else encoding_anthropic.decode(
|
96 |
+
chunk_tokens) for chunk_tokens in chunks_generator]
|
97 |
+
|
98 |
+
# Display each chunk in a separate text area
|
99 |
+
for i, chunk in enumerate(chunks, 1):
|
100 |
+
chunk_content = st.text_area(f"Chunk {i} content:", chunk, height=200)
|
101 |
+
|
102 |
+
# Button to compute tokens of the text area content
|
103 |
+
if st.button("Compute Tokens"):
|
104 |
+
if model_choice == "OpenAI":
|
105 |
+
num_tokens = len(encoding_openAI.encode(st.session_state.text_content))
|
106 |
+
st.write(f"Total number of tokens (OpenAI): {num_tokens}")
|
107 |
+
else:
|
108 |
+
tokens_count = len(encoding_anthropic.encode(
|
109 |
+
st.session_state.text_content))
|
110 |
+
st.write(f"Total number of tokens (Anthropic): {tokens_count}")
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|