Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +210 -0
- config.yaml +17 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
# from img_classification import teachable_machine_classification
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import streamlit_authenticator as stauth
|
5 |
+
import yaml
|
6 |
+
from yaml.loader import SafeLoader
|
7 |
+
import os.path as osp
|
8 |
+
import glob
|
9 |
+
# import cv2
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
13 |
+
from PIL import Image
|
14 |
+
import requests
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
19 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
20 |
+
|
21 |
+
|
22 |
+
# authentification
|
23 |
+
with open('./config.yaml') as file:
|
24 |
+
config = yaml.load(file, Loader=SafeLoader)
|
25 |
+
authenticator = stauth.Authenticate(
|
26 |
+
config['credentials'],
|
27 |
+
config['cookie']['name'],
|
28 |
+
config['cookie']['key'],
|
29 |
+
config['cookie']['expiry_days'],
|
30 |
+
config['preauthorized']
|
31 |
+
)
|
32 |
+
|
33 |
+
name, authentication_status, username = authenticator.login('Login', 'main')
|
34 |
+
if authentication_status:
|
35 |
+
authenticator.logout('Logout', 'main')
|
36 |
+
|
37 |
+
page = st.sidebar.selectbox("探索或预测", ("image_caption",
|
38 |
+
"image_to_text"
|
39 |
+
))
|
40 |
+
|
41 |
+
if page == "image_caption":
|
42 |
+
|
43 |
+
st.title("Image caption")
|
44 |
+
st.write("Model[link](https://huggingface.co/Salesforce/blip-image-captioning-base)")
|
45 |
+
|
46 |
+
|
47 |
+
uploaded_file = st.file_uploader("Select..", type=["jpg","png","jpeg"])
|
48 |
+
if uploaded_file is not None:
|
49 |
+
raw_image = Image.open(uploaded_file).convert('RGB')
|
50 |
+
st.image(raw_image, caption='image', use_column_width=True)
|
51 |
+
st.write("")
|
52 |
+
|
53 |
+
# unconditional image captioning
|
54 |
+
inputs = processor(raw_image, return_tensors="pt")
|
55 |
+
|
56 |
+
out = model.generate(**inputs)
|
57 |
+
st.text(processor.decode(out[0], skip_special_tokens=True))
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
# st.text(generated_text)
|
62 |
+
|
63 |
+
urll = st.text_input("image url", value="")
|
64 |
+
if st.button("send"):
|
65 |
+
raw_image = Image.open(requests.get(urll, stream=True).raw).convert('RGB')
|
66 |
+
|
67 |
+
inputs = processor(raw_image, return_tensors="pt")
|
68 |
+
|
69 |
+
out = model.generate(**inputs)
|
70 |
+
st.text(processor.decode(out[0], skip_special_tokens=True))
|
71 |
+
|
72 |
+
elif page == "image_to_text":
|
73 |
+
pass
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
# page = st.sidebar.selectbox("探索或预测", ("将图像放大为高清",
|
79 |
+
# "肺炎x_ray图像分类",
|
80 |
+
# "生成动漫人脸图像"
|
81 |
+
# ))
|
82 |
+
|
83 |
+
# if page == "肺炎x_ray图像分类":
|
84 |
+
# st.title("使用谷歌的可教机器进行图像分类")
|
85 |
+
# st.write("Google Teachable machine"" [link](https://teachablemachine.withgoogle.com/train/image)")
|
86 |
+
# st.header("肺炎x_ray")
|
87 |
+
# st.text("上传肺x_ray图片")
|
88 |
+
|
89 |
+
# uploaded_file = st.file_uploader("选择..", type=["jpg","png","jpeg"])
|
90 |
+
# if uploaded_file is not None:
|
91 |
+
# image = Image.open(uploaded_file).convert('RGB')
|
92 |
+
# st.image(image, caption='上传了图片。', use_column_width=True)
|
93 |
+
# st.write("")
|
94 |
+
# st.write("分类...")
|
95 |
+
# label = teachable_machine_classification(image, 'pneumonia__x_ray_image_classify_normal_vs_penumonia.h5')
|
96 |
+
# if label == 0:
|
97 |
+
# st.write("正常")
|
98 |
+
# else:
|
99 |
+
# st.write("肺炎")
|
100 |
+
|
101 |
+
# st.text("类:正常,肺炎")
|
102 |
+
|
103 |
+
# # 0 normal
|
104 |
+
# # 1 pneumonia
|
105 |
+
# elif page =="将图像放大为高清":
|
106 |
+
# st.title("使用 ESGAN 放大图像")
|
107 |
+
# st.write("ESGAN 安装"" [link](https://github.com/xinntao/ESRGAN)")
|
108 |
+
# st.write("ESGAN 模型下载"" [link](https://drive.google.com/drive/u/0/folders/17VYV_SoZZesU6mbxz2dMAIccSSlqLecY)")
|
109 |
+
# st.header("将图像放大为高清")
|
110 |
+
# st.text("上传图片")
|
111 |
+
|
112 |
+
# model_path = './RRDB_ESRGAN_x4.pth' # models/RRDB_ESRGAN_x4.pth OR models/RRDB_PSNR_x4.pth
|
113 |
+
# # device = torch.device('cuda') # if you want to run on CPU, change 'cuda' -> cpu
|
114 |
+
# device = torch.device('cpu')
|
115 |
+
|
116 |
+
# # test_img_folder = 'LR/*'
|
117 |
+
# uploaded_file = st.file_uploader("选择..", type=["jpg","png","jpeg"])
|
118 |
+
# if uploaded_file is not None:
|
119 |
+
# img = Image.open(uploaded_file).convert('RGB')
|
120 |
+
# st.image(img, caption='上传了图片。', use_column_width=True)
|
121 |
+
# st.write("")
|
122 |
+
# st.write("")
|
123 |
+
# st.write("放大图像,大约等待时间:1 分钟,请稍候...")
|
124 |
+
|
125 |
+
# rrdb_esrgan_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
126 |
+
# rrdb_esrgan_model.load_state_dict(torch.load(model_path), strict=True)
|
127 |
+
# rrdb_esrgan_model.eval()
|
128 |
+
# rrdb_esrgan_model = rrdb_esrgan_model.to(device)
|
129 |
+
|
130 |
+
# idx = 0
|
131 |
+
|
132 |
+
# # img = np.array(img.getdata()).reshape(img.size[0], img.size[1], 3) * 1.0 / 255
|
133 |
+
# # uploaded_file = st.file_uploader("Upload Image")
|
134 |
+
# # image = Image.open(uploaded_file)
|
135 |
+
# # st.image(image, caption='Input', use_column_width=True)
|
136 |
+
# img = np.array(img)* 1.0 / 255
|
137 |
+
# # cv2.imwrite('out.jpg', cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
|
138 |
+
|
139 |
+
# img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
|
140 |
+
# img_LR = img.unsqueeze(0)
|
141 |
+
# img_LR = img_LR.to(device)
|
142 |
+
|
143 |
+
# with torch.no_grad():
|
144 |
+
# output = rrdb_esrgan_model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
145 |
+
# output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
146 |
+
# output = torch.tensor((output * 255.0).round())
|
147 |
+
# fig1 = plt.figure(figsize=(14,8))
|
148 |
+
|
149 |
+
# fig1.suptitle("Upscaled image")
|
150 |
+
# plt.imshow(np.transpose(vutils.make_grid(output, padding=2, normalize=True), (0,1, 2)))
|
151 |
+
|
152 |
+
# st.pyplot(fig1)
|
153 |
+
|
154 |
+
# elif page =="生成动漫人脸图像":
|
155 |
+
|
156 |
+
|
157 |
+
# # Number of GPUs available. Use 0 for CPU mode.
|
158 |
+
# ngpu = 1
|
159 |
+
|
160 |
+
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
161 |
+
# device = torch.device("cpu")
|
162 |
+
# # anime_face_gan_gen_model = AnimeFaceGenerator(ngpu).to(device)
|
163 |
+
# anime_face_gan_gen_model = torch.load("./anime_face_gan_generator64_64.pt",map_location=torch.device('cpu') )
|
164 |
+
# pp1=st.slider("p1",-5.01,5.00)
|
165 |
+
# pp2=st.slider("p2",-5.01,5.00)
|
166 |
+
# pp3=st.slider("p3",-5.01,5.00)
|
167 |
+
# pp4=st.slider("p4",-5.01,5.00)
|
168 |
+
# pp5=st.slider("p5",-5.01,5.00)
|
169 |
+
# pp6=st.slider("p6",-5.01,5.00)
|
170 |
+
# pp7=st.slider("p7",-5.01,5.00)
|
171 |
+
# pp8=st.slider("p8",-5.01,5.00)
|
172 |
+
# anime_face_gan_gen_model.eval()
|
173 |
+
# bla = [pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8]
|
174 |
+
# randomlist = []
|
175 |
+
# for i in range(0,92):
|
176 |
+
# n = random.random()
|
177 |
+
# randomlist.append(n)
|
178 |
+
# res = bla + randomlist
|
179 |
+
# # print(res)
|
180 |
+
|
181 |
+
# fixed_noise = torch.tensor(res).reshape(1,100,1,1)
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
# # fixed_noise = torch.randn(1, nz, 1, 1, device=device)
|
186 |
+
# print(fixed_noise)
|
187 |
+
# fake = anime_face_gan_gen_model(fixed_noise)
|
188 |
+
|
189 |
+
# fig1 = plt.figure(figsize=(14,8))
|
190 |
+
|
191 |
+
# fig1.suptitle("随机生成的动漫脸")
|
192 |
+
|
193 |
+
# plt.imshow(np.transpose(vutils.make_grid(fake, padding=2, normalize=True), (1, 2, 0)))
|
194 |
+
|
195 |
+
# st.pyplot(fig1)
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
elif authentication_status == False:
|
200 |
+
st.error("用户名/密码不正确")
|
201 |
+
elif authentication_status == None:
|
202 |
+
st.warning('请输入您的用户名和密码')
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
config.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
credentials:
|
2 |
+
usernames:
|
3 |
+
jsmith:
|
4 |
+
email: [email protected]
|
5 |
+
name: John Smith
|
6 |
+
password: $2b$12$ry8j7c.cyCtv5X92THQxmeMTTnafUOr.pTzdb4T1B7v2p1DdayooW #abc # To be replaced with hashed password
|
7 |
+
rbriggs:
|
8 |
+
email: [email protected]
|
9 |
+
name: Rebecca Briggs
|
10 |
+
password: 2b$12$A9k.KJXV2/pjXTf0ve7.eualBqrpUug9Dt2Hze1zORDFx6/UosKKW #def # To be replaced with hashed password
|
11 |
+
cookie:
|
12 |
+
expiry_days: 30
|
13 |
+
key: random_signature_key # Must be string
|
14 |
+
name: random_cookie_name
|
15 |
+
preauthorized:
|
16 |
+
emails:
|
17 |
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit-authenticator==0.2.1
|
2 |
+
openai==0.27.4
|
3 |
+
torch==2.0.0
|
4 |
+
transformers==4.27.4
|