dataextraction / app.py
hardik27's picture
Update app.py
9865c91 verified
raw
history blame
12 kB
import PyPDF2
import pandas as pd
import os
import ast
import streamlit as st
import pandas as pd
import os
from google.oauth2.credentials import Credentials
from google.auth.transport.requests import Request
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from googleapiclient.http import MediaIoBaseDownload,MediaFileUpload
# Load credentials from environment variables
config = {'installed': {'client_id': os.environ.get("client_id"),
'project_id': os.environ.get("project_id"),
'auth_uri': os.environ.get("auth_uri"),
'token_uri': os.environ.get("token_uri"),
'auth_provider_x509_cert_url': os.environ.get("auth_provider_x509_cert_url"),
'client_secret': os.environ.get("client_secret"),
'redirect_uris': ['http://localhost']}}
SCOPES = ['https://www.googleapis.com/auth/drive']
def authenticate():
creds = None
# Check if token file exists
if os.path.exists('token.json'):
creds = Credentials.from_authorized_user_file('token.json')
# If no valid credentials available, ask the user to login
if not creds or not creds.valid:
if creds and creds.expired and creds.refresh_token:
creds.refresh(Request())
else:
# flow = InstalledAppFlow.from_client_secrets_file("credentials.json", SCOPES)
flow = InstalledAppFlow.from_client_config(config,SCOPES)
creds = flow.run_local_server(port=0)
# Save the credentials for next run
with open('token.json', 'w') as token:
token.write(creds.to_json())
return creds
MAPPING_FILENAME = "Data Mapping with ItemCode.xlsx"
def convert_pdf_to_excel(pdf_file):
inputpdf = PyPDF2.PdfReader(pdf_file)
pages_no = len(inputpdf.pages)
whole_data = []
for i in range(pages_no):
inputpdf = PyPDF2.PdfReader(pdf_file)
# output = PyPDF2.PdfWriter()
# output.add_page(inputpdf.pages[i])
pageObj = inputpdf.pages[i]
page_content = pageObj.extract_text()
for each_table in [i for i in page_content.split('Delivery Schedule Sheet') if i]:
data = each_table.split('\n')
each_table_data = []
date_qty = []
row_start_index = 0
row_stop_index = 0
year = ""
for index in range(len(data)):
if data[index].strip() == 'Part No.':
each_table_data.append(data[index+1].replace('Part Color Code',""))
if 'Part Name' not in data[index+2]:
each_table_data.append(data[index+2].replace('Part Color Code',""))
else:
each_table_data.append("")
if data[index].strip()=='MORIROKU TECHNOLOGY':
try:
year = data[index+1].split(' ')[0].split('/')[1]
except Exception as e:
print(e)
year = ""
if 'Part Name' in data[index].strip():
each_table_data.append(data[index+1])
if data[index].strip() == 'ADJ':
row_start_index = index + 1
if data[index].strip() == 'Total':
row_stop_index = index
if row_start_index>0 and row_stop_index>0:
for index in range(row_start_index,row_stop_index):
if '/' in data[index].strip():
date_qty.append([data[index].strip()[-5:].strip() + "/"+year,data[index+1].strip()])
if not date_qty:
date_qty = [["",""]]
each_table_data.append(date_qty)
whole_data.append(each_table_data)
whole_data = pd.DataFrame(whole_data)
whole_data.columns = ["Part No.","Part Color Code","Part Name",'Date Qty']
extracted_file = "Data Extracted.xlsx"
data_for_mapping = "Data Mapping.xlsx"
extracted_data_for_mapping = whole_data.drop('Date Qty',axis=1)
extracted_data_for_mapping = extracted_data_for_mapping.drop_duplicates(subset=["Part No.","Part Color Code","Part Name"])
extracted_data_for_mapping.columns = ['Customer Part no as per pdf','Customer Part name as per pdf','Customer Part color as per pdf']
whole_data.to_excel(extracted_file, index=False)
extracted_data_for_mapping.to_excel(data_for_mapping, index=False)
return extracted_file,data_for_mapping
def map_data_to_template(excel_file, mapping_file):
# Load Excel file and mapping file
extracted_data = pd.read_excel(excel_file)
mapping_data = pd.read_excel(mapping_file)
mapping_data.to_excel(MAPPING_FILENAME,index=False)
save_mapping_file_to_drive()
mapping_data = mapping_data.rename(columns = {'Customer Part no as per pdf':'Part No.'})
# Perform mapping
extracted_data['Date Qty'] = extracted_data['Date Qty'].apply(lambda x: ast.literal_eval(x))
extracted_data = extracted_data.explode('Date Qty')
extracted_data[['SchDate','Qty']]= pd.DataFrame(extracted_data['Date Qty'].to_list(), index= extracted_data.index)
extracted_data = extracted_data.drop('Date Qty',axis=1)
extracted_data = extracted_data[~extracted_data['SchDate'].isna()]
mapped_data = extracted_data.merge(mapping_data, on =['Part No.'],how='outer')[['Item Code','SchDate','Qty']]
mapped_data['SOType'] = "R"
mapped_data = mapped_data[~mapped_data["SchDate"].isna()]
return mapped_data
def save_mapping_file_to_drive():
# creds = Credentials.from_authorized_user_info(credentials_dict)
creds = authenticate()
service = build('drive', 'v3', credentials=creds)
# Authenticate with Google Drive API
service = build('drive', 'v3', credentials=creds)
folder_id = "1HBRUZePST0D0buyU9MxeYg2vQyEL4wLF"
# List all files in the folder
results = service.files().list(
q=f"'{folder_id}' in parents and mimeType='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'",
fields="files(id, name)").execute()
files = results.get('files', [])
files = [i for i in files if i.get('name')==MAPPING_FILENAME]
if not files:
print('No Excel Mapping files found in the folder.')
else:
for file in files:
# Get the ID and name of the first Excel file found in the folder
existing_file_id = file['id']
existing_file_name = file['name']
# Delete the existing file
service.files().delete(fileId=existing_file_id).execute()
file_metadata = {'name': MAPPING_FILENAME, 'parents': [folder_id]}
media = MediaFileUpload(MAPPING_FILENAME, mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
service.files().create(body=file_metadata, media_body=media, fields='id').execute()
def pull_mapping_file_from_drive():
creds = authenticate()
service = build('drive', 'v3', credentials=creds)
# creds = Credentials.from_authorized_user_info(credentials_dict)
# Authenticate with Google Drive API
service = build('drive', 'v3', credentials=creds)
results = service.files().list(
q="mimeType='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'",
fields="files(id, name)").execute()
files = results.get('files', [])
files = [i for i in files if i.get('name')==MAPPING_FILENAME]
if files:
file_id = files[0]['id']
file_name = files[0]['name']
request = service.files().get_media(fileId=file_id)
fh = open(file_name, 'wb')
downloader = MediaIoBaseDownload(fh, request)
# Execute the download
done = False
while not done:
status, done = downloader.next_chunk()
fh.close()
return 1
print('No Excel files found.')
return 0
def main():
st.title("PDF to Excel Converter")
# File uploader
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
if uploaded_file is not None:
st.write("Uploaded PDF file:", uploaded_file.name)
# Convert PDF to Excel
extracted_file,data_for_mapping = convert_pdf_to_excel(uploaded_file)
file_present = pull_mapping_file_from_drive()
if file_present:
mapping_data_from_drive = pd.read_excel(MAPPING_FILENAME)
extracted_data_for_mapping = pd.read_excel(data_for_mapping)
extracted_data_for_mapping = extracted_data_for_mapping.merge(mapping_data_from_drive, on = ['Customer Part no as per pdf','Customer Part name as per pdf','Customer Part color as per pdf'], how='outer')
extracted_data_for_mapping.to_excel(data_for_mapping,index=False)
# Download link for the Excel file
# st.markdown(f"Download the extracted data in Excel file [here](/{excel_file})")
if os.path.exists(data_for_mapping):
with open(data_for_mapping, "rb") as f:
excel_bytes = f.read()
st.download_button(
label="Download Excel file",
data=excel_bytes,
file_name=data_for_mapping,
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
else:
st.error("Error: Converted Excel file not found")
if not file_present:
st.markdown("## Upload the Data Master file with Item Code mapping")
mapping_uploaded_file = st.file_uploader("Upload the Data Master file with Item Code mapping", type=["xlsx","ods"])
else:
try:
mapping_data = pd.read_excel(MAPPING_FILENAME)
# mapping_data = mapping_data.rename(columns = {'Customer Part no as per pdf':'Part No.'})
data_for_mapping = "Data Mapping.xlsx"
extracted_data_for_mapping = pd.read_excel(data_for_mapping)
extracted_data_for_mapping = extracted_data_for_mapping[~extracted_data_for_mapping['Customer Part no as per pdf'].isin(mapping_data['Customer Part no as per pdf'])]
unmapped_part_no = extracted_data_for_mapping['Customer Part no as per pdf'].nunique()
if unmapped_part_no>0:
st.markdown("#### There are {} Part No. with No ItemCode present. Upload a new file after mapping them".format(unmapped_part_no))
mapping_uploaded_file = st.file_uploader("Upload the Data Master file with Item Code mapping", type=["xlsx","ods"])
else:
st.markdown("#### Using the Mapping file available in Google Drive")
mapping_uploaded_file = MAPPING_FILENAME
except:
st.markdown("#### Using the Mapping file available in Google Drive")
mapping_uploaded_file = MAPPING_FILENAME
if mapping_uploaded_file is not None:
# st.write("Uploaded Mapping Excel file:", mapping_uploaded_file.name)
# Perform data mapping
mapped_data = map_data_to_template(extracted_file, mapping_uploaded_file)
# Provide a link to download the final Excel file after mapping
st.markdown("### Final Excel File After Mapping")
final_excel_file = 'Final Data.xlsx'
mapped_data.to_excel(final_excel_file, index=False)
if os.path.exists(final_excel_file):
with open(final_excel_file, "rb") as f:
excel_bytes = f.read()
st.download_button(
label="Download Excel file",
data=excel_bytes,
file_name=final_excel_file,
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
else:
st.error("Error: Converted Excel file not found")
if __name__ == "__main__":
main()