dataextraction / app.py
hardik27's picture
Update app.py
338af71 verified
raw
history blame
17.3 kB
import PyPDF2
import pandas as pd
import os
import ast
import streamlit as st
import pandas as pd
import os
from google.oauth2.credentials import Credentials
from google.auth.transport.requests import Request
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from googleapiclient.http import MediaIoBaseDownload,MediaFileUpload
from google.oauth2 import service_account
import base64
def get_image_as_base64(image_path):
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
# Load credentials from environment variables
SERVICE_ACCOUNT_INFO = {
"type": "service_account",
"project_id": os.environ.get("project_id"),
"private_key_id": os.environ.get("private_key_id"),
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQCU+RlXQVzTifBI\nqDoj1yt2sLvFepy9edxEjAwAdyM0ICesvB6SCFpVGV3dV19c1PiwqqsnzGSGz3ji\nnSOxFXEve5pXFziCDVVIeaQ7g59GYLHOfKUtvqGewpxXm6gP1yrzHprpbHpBomXW\nnZNvIZ/SWzn8n4CjWV5A4V1mqfZq9OkBlJRsjJ0gh84g7QMQZ45lBrev1BUK5DtY\n8lMjP5XkQJGT4Z4km+qdsjMf+QCKLU5U2dsvNp1vViElKCwok9PfCeF+/fYX7WW5\nddpNkFC8/iOK9hf6jYbRW9Luo3OEqHV5uyqfBDQLHiZw4WuOvuY92TpWhkSlQsaN\nZiAQNR/lAgMBAAECggEAFDPJt3cCNx+8KaZCqCycVM630BqGGf3mHJefYwrFB+Ma\nbkbeoHAoi+TSQVuBb63kAdVLO6zwrwWAv76Oogul20oYTpo0DBLxz0/LsVRyq5Ee\nW8G0hsUU1tpOaGUQAAHubaTnXiNbWv5CcD3TSh1Vtqmvbe5VfBF5AjRtvafr5moV\n/oiKiOHNCR4QkA0kgynafTGd4UkZ+xekh6nWAQcj/Ri4BgYYckzHgIn/4eXE88p4\nq1L6JF2w0GHolLHaDpDBqii4CIhSc7i1jmM5NRriGfetzinR+ch0dVOt0ssdpkKK\nRxntHK93MhBUfue9/ZKZXlRhk7LfNyqfL99ghkhrIQKBgQDQ+QP7PD+JKuw+b6r/\n+2KhOu3A8diWp0euJsiHBZeIzmx9c7XLHbnv/H3NhLdhfGIBel/YmrT+hGUFiCa2\nn+7hGdgBjVt0EYGSxfBqwDpgBsPfEqsCIhOiLQSuECjfJV2XTRffhwVVzAwEQMan\nRwY6Pfh7VBSC7YTT7tCW+ohkMQKBgQC2f3uy4m7PdvONybirm8GTvVB0HdR0uDig\nDdg7iRuDc1YVksQ3I9Mi0TUTeTDNxeZ6eKNNY9EwIi61FKlacg11dXBCgXIHxwvw\ntBmeJffYLLijrF5D30pYJ39sO6YTdhXz8k2JQ9kjPygRA35ynD7frUYY8wVh2vId\n7VzSiBLN9QKBgQC7yMl3HnDJxjR89sPnO/Mph1bXJ3zGBJQ5Psi77J57ZWPAaBZY\n6+GGcpJp+HUBuVAom9s9PeifPkG5ctu3CIkU5rBg1LH13zVcu1qL0ymh2PJypsfd\nJtoVxfaKpCLWQzGTIMfvKdn1e2Lg/4SEFSLXe5Cq4qd78AyIlfYDdibSQQKBgQCW\n/KAN3tLI6GQWgbc8m4+rOKywdOGKc8O9f9bPYt8VgT3OeW/HIueS3b1o0BJ1nG7U\nEq0g4R14Ej/MZzy57LR/4lqvW0NJdf/F9GthcY49FrroBzqyMrHif0Mn+62qWj9N\nZcGKeEzUoXL3qIlcLzLBgi0FhUKFtEwuQGxUbmoIZQKBgQCYL9by084u0Sf1858i\narIVVg6baBK+MDnxG0YNTVovZv31n30Q0saT0KYZEVWbPDYL/Q+0zfn4qmI1L9Sd\nHedzZ1fREI61XwP/WxDojgZ22fkGbMVfnINjBwbWFMiKf5k7wQzhI5t+oOT0l9ti\n2GsPiT9eCYuz6WV4+Q9RXolrhQ==\n-----END PRIVATE KEY-----\n",
"client_email": os.environ.get("client_email"),
"client_id": os.environ.get("client_id"),
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": os.environ.get("token_uri"),
"auth_provider_x509_cert_url": os.environ.get("auth_provider_x509_cert_url"),
"client_x509_cert_url": os.environ.get("client_x509_cert_url"),
"universe_domain": "googleapis.com"
}
SCOPES = ['https://www.googleapis.com/auth/drive']
def authenticate():
# Authenticate using service account credentials
creds = service_account.Credentials.from_service_account_info(SERVICE_ACCOUNT_INFO, scopes=['https://www.googleapis.com/auth/drive'])
# Build the Drive API service
# service = build('drive', 'v3', credentials=creds)
return creds
# creds = service_account.Credentials.from_service_account_file(
# SERVICE_ACCOUNT_FILE, scopes=['https://www.googleapis.com/auth/drive'])
# Check if token file exists
# if os.path.exists('token.json'):
# creds = Credentials.from_authorized_user_file('token.json')
# If no valid credentials available, ask the user to login
# if not creds or not creds.valid:
# if creds and creds.expired and creds.refresh_token:
# creds.refresh(Request())
# else:
# # flow = InstalledAppFlow.from_client_secrets_file("credentials.json", SCOPES)
# flow = InstalledAppFlow.from_client_config(config,SCOPES)
# creds = flow.run_local_server(port=0)
# # Save the credentials for next run
# with open('token.json', 'w') as token:
# token.write(creds.to_json())
MAPPING_FILENAME = "Data Mapping with ItemCode.xlsx"
def convert_pdf_to_excel(pdf_file):
inputpdf = PyPDF2.PdfReader(pdf_file)
pages_no = len(inputpdf.pages)
whole_data = []
for i in range(pages_no):
inputpdf = PyPDF2.PdfReader(pdf_file)
# output = PyPDF2.PdfWriter()
# output.add_page(inputpdf.pages[i])
pageObj = inputpdf.pages[i]
page_content = pageObj.extract_text()
for each_table in [i for i in page_content.split('Delivery Schedule Sheet') if i]:
data = each_table.split('\n')
each_table_data = []
date_qty = []
row_start_index = 0
row_stop_index = 0
year = ""
for index in range(len(data)):
if data[index].strip() == 'Part No.':
each_table_data.append(data[index+1].replace('Part Color Code',""))
if 'Part Name' not in data[index+2]:
each_table_data.append(data[index+2].replace('Part Color Code',""))
else:
each_table_data.append("")
if data[index].strip()=='MORIROKU TECHNOLOGY':
try:
year = data[index+1].split(' ')[0].split('/')[1]
except Exception as e:
print(e)
year = ""
if 'Part Name' in data[index].strip():
each_table_data.append(data[index+1])
if 'Inventory Category' in data[index].strip():
each_table_data.append(data[index+1].replace('Receive Type',""))
if data[index].strip() == 'ADJ':
row_start_index = index + 1
if data[index].strip() == 'Total':
row_stop_index = index
if row_start_index>0 and row_stop_index>0:
for index in range(row_start_index,row_stop_index):
if '/' in data[index].strip():
date_qty.append([data[index].strip()[-5:].strip() + "/"+year,data[index+1].strip()])
if not date_qty:
date_qty = [["",""]]
each_table_data.append(date_qty)
whole_data.append(each_table_data)
whole_data = pd.DataFrame(whole_data)
whole_data.columns = ["Part No.","Part Color Code","Part Name",'Inventory Category','Date Qty']
extracted_file = "Data Extracted.xlsx"
data_for_mapping = "Data Mapping.xlsx"
extracted_data_for_mapping = whole_data.drop('Date Qty',axis=1)
extracted_data_for_mapping = extracted_data_for_mapping.drop_duplicates(subset=["Part No.","Part Color Code","Part Name","Inventory Category"])
extracted_data_for_mapping.columns = ['Customer Part no as per pdf','Customer Part color as per pdf','Customer Part name as per pdf',"Inventory Category as per pdf"]
extracted_data_for_mapping['Item Code'] = ""
whole_data.to_excel(extracted_file, index=False)
extracted_data_for_mapping.to_excel(data_for_mapping, index=False)
return extracted_file,data_for_mapping
def map_data_to_template(excel_file, mapping_file):
# Load Excel file and mapping file
extracted_data = pd.read_excel(excel_file)
mapping_data = pd.read_excel(mapping_file)
mapping_data.to_excel(MAPPING_FILENAME,index=False)
save_mapping_file_to_drive()
mapping_data = mapping_data.rename(columns = {'Customer Part no as per pdf':'Part No.'})
# Perform mapping
extracted_data['Date Qty'] = extracted_data['Date Qty'].apply(lambda x: ast.literal_eval(x))
extracted_data = extracted_data.explode('Date Qty')
extracted_data[['SchDate','Qty']]= pd.DataFrame(extracted_data['Date Qty'].to_list(), index= extracted_data.index)
extracted_data = extracted_data.drop('Date Qty',axis=1)
extracted_data = extracted_data[~extracted_data['SchDate'].isna()]
mapped_data = extracted_data.merge(mapping_data, on =['Part No.'],how='outer')[['Item Code','SchDate','Qty','Inventory Category']]
mapped_data = mapped_data[~mapped_data["SchDate"].isna()]
mapped_data = mapped_data[~mapped_data["SchDate"].str.strip().isin(["",None])]
mapped_data['SOType'] = "R"
return mapped_data[["SchDate","SOType","Item Code","Qty","Inventory Category"]]
def save_mapping_file_to_drive():
# creds = Credentials.from_authorized_user_info(credentials_dict)
creds = authenticate()
service = build('drive', 'v3', credentials=creds)
# Authenticate with Google Drive API
# service = build('drive', 'v3', credentials=creds)
# List all files in the folder
# results = service.files().list(
# q=f"'{folder_id}' in parents and mimeType='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'",
# fields="files(id, name)").execute()
results = service.files().list(
q=f"mimeType='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'",
fields="files(id, name)").execute()
files = results.get('files', [])
files = [i for i in files if i.get('name')==MAPPING_FILENAME]
if not files:
print('No Excel Mapping files found in the folder.')
else:
for file in files:
# Get the ID and name of the first Excel file found in the folder
existing_file_id = file['id']
existing_file_name = file['name']
# Delete the existing file
service.files().delete(fileId=existing_file_id).execute()
file_metadata = {'name': MAPPING_FILENAME }
media = MediaFileUpload(MAPPING_FILENAME, mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
service.files().create(body=file_metadata, media_body=media, fields='id').execute()
def pull_mapping_file_from_drive():
creds = authenticate()
# service = build('drive', 'v3', credentials=creds)
# creds = Credentials.from_authorized_user_info(credentials_dict)
# Authenticate with Google Drive API
service = build('drive', 'v3', credentials=creds)
results = service.files().list(
q="mimeType='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'",
fields="files(id, name)").execute()
files = results.get('files', [])
files = [i for i in files if i.get('name')==MAPPING_FILENAME]
if files:
file_id = files[0]['id']
file_name = files[0]['name']
request = service.files().get_media(fileId=file_id)
fh = open(file_name, 'wb')
downloader = MediaIoBaseDownload(fh, request)
# Execute the download
done = False
while not done:
status, done = downloader.next_chunk()
fh.close()
return 1
return 0
def delete_master_file():
creds = authenticate()
service = build('drive', 'v3', credentials=creds)
# Authenticate with Google Drive API
# service = build('drive', 'v3', credentials=creds)
folder_id = "1HBRUZePST0D0buyU9MxeYg2vQyEL4wLF"
# List all files in the folder
results = service.files().list(
q=f"mimeType='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'",
fields="files(id, name)").execute()
files = results.get('files', [])
files = [i for i in files if i.get('name')==MAPPING_FILENAME]
if not files:
print('No Excel Mapping files found in the folder.')
else:
for file in files:
# Get the ID and name of the first Excel file found in the folder
existing_file_id = file['id']
existing_file_name = file['name']
# Delete the existing file
service.files().delete(fileId=existing_file_id).execute()
print("Deleted master file")
def main():
# Load your logo image
logo_path = "logo.jpeg"
logo_base64 = get_image_as_base64(logo_path)
logo_html = f"""
<div style="display: flex; justify-content: center; align-items: center; height: 100px;">
<img src="data:image/jpeg;base64,{logo_base64}" style="width: 100px; height: 100px;">
</div>
"""
# Display the logo HTML
st.markdown(logo_html, unsafe_allow_html=True)
st.markdown("<h1 style='text-align: center;'>PDF to Excel Converter</h1>", unsafe_allow_html=True)
# File uploader
st.markdown("### STEP 1")
st.markdown("#### Upload a PDF File")
uploaded_file = st.file_uploader("### Upload a PDF file", type=["pdf"])
if uploaded_file is not None:
st.write("Uploaded PDF file:", uploaded_file.name)
# Convert PDF to Excel
extracted_file,data_for_mapping = convert_pdf_to_excel(uploaded_file)
file_present = pull_mapping_file_from_drive()
if file_present:
try:
mapping_data_from_drive = pd.read_excel(MAPPING_FILENAME)
extracted_data_for_mapping = pd.read_excel(data_for_mapping)
extracted_data_for_mapping.columns = [i.strip() for i in extracted_data_for_mapping.columns]
mapping_data_from_drive.columns = [i.strip() for i in mapping_data_from_drive.columns]
extracted_data_for_mapping = extracted_data_for_mapping[['Customer Part no as per pdf','Customer Part name as per pdf','Customer Part color as per pdf',"Inventory Category as per pdf"]].merge(mapping_data_from_drive, on = ['Customer Part no as per pdf','Customer Part name as per pdf','Customer Part color as per pdf'], how='outer')
extracted_data_for_mapping.to_excel(data_for_mapping,index=False)
except Exception as e:
st.error("Error in the Mapping Master file on Cloud. " + str(e))
st.error("Please reupload the Data Master file with Item Code mapping")
delete_master_file()
file_present = None
# Download link for the Excel file
# st.markdown(f"Download the extracted data in Excel file [here](/{excel_file})")
if os.path.exists(data_for_mapping):
with open(data_for_mapping, "rb") as f:
excel_bytes = f.read()
st.download_button(
label="Download Excel file",
data=excel_bytes,
file_name=data_for_mapping,
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
else:
st.error("Error: Converted Excel file not found")
st.markdown("### STEP 2")
if not file_present:
st.markdown("#### Upload the Data Master file with Item Code mapping")
mapping_uploaded_file = st.file_uploader("Upload the Data Master file with Item Code mapping", type=["xlsx","ods"])
else:
mapping_data = pd.read_excel(MAPPING_FILENAME)
# mapping_data = mapping_data.rename(columns = {'Customer Part no as per pdf':'Part No.'})
data_for_mapping = "Data Mapping.xlsx"
extracted_data_for_mapping = pd.read_excel(data_for_mapping)
if 'Item Code' not in extracted_data_for_mapping.columns:
extracted_data_for_mapping['Item Code'] = ""
extracted_data_for_mapping = extracted_data_for_mapping[extracted_data_for_mapping['Item Code'].isna()]
unmapped_part_no = extracted_data_for_mapping['Customer Part no as per pdf'].nunique()
if unmapped_part_no>0:
st.markdown("#### There are {} Part No. with No ItemCode present. Upload a new file after mapping them".format(unmapped_part_no))
mapping_uploaded_file = st.file_uploader("Upload the Data Master file with Item Code mapping", type=["xlsx","ods"])
else:
st.markdown("#### All Part No. are mapped with ItemCode so using the Mapping file available in Google Drive")
mapping_uploaded_file = MAPPING_FILENAME
if mapping_uploaded_file is not None:
# st.write("Uploaded Mapping Excel file:", mapping_uploaded_file.name)
# Perform data mapping
mapped_data = map_data_to_template(extracted_file, mapping_uploaded_file)
# Provide a link to download the final Excel file after mapping
st.markdown("### FINAL DOWNLOAD")
st.markdown("### Final Excel File After Mapping")
final_excel_file = 'Final Data.xlsx'
mapped_data.to_excel(final_excel_file, index=False)
if os.path.exists(final_excel_file):
with open(final_excel_file, "rb") as f:
excel_bytes = f.read()
st.download_button(
label="Download Excel file",
data=excel_bytes,
file_name=final_excel_file,
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
else:
st.error("Error: Converted Excel file not found")
if __name__ == "__main__":
main()