Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
import pandas as pd
|
7 |
+
import tabula
|
8 |
+
|
9 |
+
def convert_pdf_to_excel(pdf_file):
|
10 |
+
# Use tabula to extract tables from PDF
|
11 |
+
inputpdf = PyPDF2.PdfReader(pdf_file)
|
12 |
+
pages_no = len(inputpdf.pages)
|
13 |
+
whole_data = []
|
14 |
+
for i in range(pages_no):
|
15 |
+
inputpdf = PyPDF2.PdfReader(pdf_file)
|
16 |
+
# output = PyPDF2.PdfWriter()
|
17 |
+
# output.add_page(inputpdf.pages[i])
|
18 |
+
pageObj = inputpdf.pages[i]
|
19 |
+
page_content = pageObj.extract_text()
|
20 |
+
for each_table in [i for i in page_content.split('Delivery Schedule Sheet') if i]:
|
21 |
+
data = each_table.split('\n')
|
22 |
+
each_table_data = []
|
23 |
+
for index in range(len(data)):
|
24 |
+
if data[index].strip() == 'Part No.':
|
25 |
+
each_table_data.append(data[index+1].replace('Part Color Code',""))
|
26 |
+
if 'Part Name' not in data[index+2]:
|
27 |
+
each_table_data.append(data[index+2].replace('Part Color Code',""))
|
28 |
+
else:
|
29 |
+
each_table_data.append("")
|
30 |
+
|
31 |
+
if 'Part Name' in data[index].strip():
|
32 |
+
each_table_data.append(data[index+1])
|
33 |
+
whole_data.append(each_table_data)
|
34 |
+
|
35 |
+
whole_data = pd.DataFrame(whole_data)
|
36 |
+
whole_data.columns = ["Part No.","Part Color Code","Part Name"]
|
37 |
+
# whole_data.to_csv("Extracted_Data.csv",index=False)
|
38 |
+
|
39 |
+
# Convert each table into a DataFrame
|
40 |
+
# dfs = []
|
41 |
+
# for table in tables:
|
42 |
+
# dfs.append(table)
|
43 |
+
|
44 |
+
# # Concatenate all DataFrames into a single DataFrame
|
45 |
+
# result = pd.concat(dfs)
|
46 |
+
|
47 |
+
# Convert DataFrame to Excel
|
48 |
+
# excel_file = pdf_file.name.replace('.pdf', '.xlsx')
|
49 |
+
# result.to_excel(excel_file, index=False)
|
50 |
+
excel_file = pdf_file.name.replace('.pdf', '.xlsx')
|
51 |
+
whole_data.to_excel(excel_file, index=False)
|
52 |
+
|
53 |
+
return excel_file
|
54 |
+
|
55 |
+
|
56 |
+
# whole_data.to_csv(excel_file,index=False)
|
57 |
+
|
58 |
+
# return excel_file
|
59 |
+
|
60 |
+
def main():
|
61 |
+
st.title("PDF to Excel Converter")
|
62 |
+
|
63 |
+
# File uploader
|
64 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
65 |
+
|
66 |
+
if uploaded_file is not None:
|
67 |
+
st.write("Uploaded PDF file:", uploaded_file.name)
|
68 |
+
|
69 |
+
# Convert PDF to Excel
|
70 |
+
excel_file = convert_pdf_to_excel(uploaded_file)
|
71 |
+
|
72 |
+
# Download link for the Excel file
|
73 |
+
# st.markdown(f"Download the extracted data in Excel file [here](/{excel_file})")
|
74 |
+
|
75 |
+
if os.path.exists(excel_file):
|
76 |
+
with open(excel_file, "rb") as f:
|
77 |
+
excel_bytes = f.read()
|
78 |
+
st.download_button(
|
79 |
+
label="Download Excel file",
|
80 |
+
data=excel_bytes,
|
81 |
+
file_name=excel_file,
|
82 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
st.error("Error: Converted Excel file not found")
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
main()
|
89 |
+
|
90 |
+
# file_name = input("Give Complete file location")
|
91 |
+
|
92 |
+
# file_name = '/home/hardik/Downloads/data extraction/HSCI.2.20231121154327.WG.IFORD001.0492.4348.5M09-01.pdf'
|
93 |
+
# pdf_in_file = open(file_name,'rb')
|