File size: 10,998 Bytes
d2941e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import pandas as pd
import numpy as np
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from rank_bm25 import BM25Okapi
from kiwipiepy import Kiwi
from typing import List
import gradio as gr

class ProductSearchSystem:
    def __init__(self, 
                 model_name: str = "snunlp/KR-SBERT-V40K-klueNLI-augSTS",
                 bm25_weight: float = 0.3,
                 vector_weight: float = 0.7):
        """검색 μ‹œμŠ€ν…œ μ΄ˆκΈ°ν™”"""
        self.embeddings = HuggingFaceEmbeddings(
            model_name=model_name,
            model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
        )
        self.bm25_weight = bm25_weight
        self.vector_weight = vector_weight
        self.vector_store = None
        self.bm25 = None
        self.documents = []
        self.df = None
        # Kiwi ν† ν¬λ‚˜μ΄μ € μ΄ˆκΈ°ν™”
        self.kiwi = Kiwi()
        
    def _tokenize_text(self, text: str) -> List[str]:
        """Kiwiλ₯Ό μ‚¬μš©ν•œ ν…μŠ€νŠΈ ν† ν¬λ‚˜μ΄μ§•"""
        # ν˜•νƒœμ†Œ 뢄석 μˆ˜ν–‰
        tokens = self.kiwi.tokenize(text)
        # λͺ…사, 동사, ν˜•μš©μ‚¬λ§Œ μΆ”μΆœ
        pos_tags = ['NNG', 'NNP', 'VV', 'VA', 'SL']  # 일반λͺ…사, 고유λͺ…사, 동사, ν˜•μš©μ‚¬
        return [token.form for token in tokens if token.tag in pos_tags]  # posλ₯Ό tag둜 λ³€κ²½
    
    def load_sample_data(self):
        """μƒ˜ν”Œ 데이터 λ‘œλ“œ"""
        self.df = pd.read_csv("sample_data.csv")
        self._preprocess_data()
        self._create_search_index()
        return True

    def _preprocess_data(self):
        """데이터 μ „μ²˜λ¦¬"""
        # 빈 κ°’ 처리
        self.df['category'] = self.df['category'].fillna('λ―ΈλΆ„λ₯˜')
        
        # 특수 문자 처리
        self.df['company_info'] = self.df['company_info'].fillna('')
        self.df['company_info'] = self.df['company_info'].str.replace('_x000D_', '\n')
        self.df['description'] = self.df['description'].fillna('')
        self.df['description'] = self.df['description'].str.replace('_x000D_', '\n')
        
        # λΆˆν•„μš”ν•œ 곡백 제거
        for col in self.df.columns:
            if self.df[col].dtype == 'object':
                self.df[col] = self.df[col].str.strip()
    
    def _create_search_index(self):
        """검색 인덱슀 생성"""
        self.documents = []
        tokenized_documents = []  # BM25용 ν† ν°ν™”λœ λ¬Έμ„œ
        
        for _, row in self.df.iterrows():
            content = f"{row['company_name']} {row['category']} {row['company_info']} {row['product_name']} {row['description']}"
            # Kiwi ν† ν¬λ‚˜μ΄μ €λ₯Ό μ‚¬μš©ν•œ 토큰화
            tokenized_doc = self._tokenize_text(content)
            tokenized_documents.append(tokenized_doc)
            
            self.documents.append(
                Document(
                    page_content=content,
                    metadata={
                        'company_name': row['company_name'],
                        'category': row['category'],
                        'company_info': row['company_info'],
                        'product_name': row['product_name'],
                        'description': row['description']
                    }
                )
            )
        
        # BM25 인덱슀 생성
        self.bm25 = BM25Okapi(tokenized_documents)
        
        # 벑터 μŠ€ν† μ–΄ 생성
        self.vector_store = FAISS.from_documents(self.documents, self.embeddings)
    
    def search(self, query: str, top_k: int = 3) -> List[dict]:
        """검색 μ‹€ν–‰"""
        if not query.strip():
            return []
        
        # BM25 검색 - Kiwi ν† ν¬λ‚˜μ΄μ € μ‚¬μš©
        tokenized_query = self._tokenize_text(query)
        bm25_scores = self.bm25.get_scores(tokenized_query)
        
        # 벑터 검색
        query_embedding = self.embeddings.embed_query(query)
        vector_docs_and_scores = self.vector_store.similarity_search_with_score(query, k=len(self.documents))
        
        # κ²°κ³Ό 톡합 및 점수 계산
        results = []
        seen_products = set()
        
        # 점수 μ •κ·œν™”λ₯Ό μœ„ν•œ μ΅œλŒ€κ°’
        max_bm25 = max(bm25_scores) if len(bm25_scores) > 0 else 1
        max_vector = max(score for _, score in vector_docs_and_scores) if vector_docs_and_scores else 1
        
        for i, doc in enumerate(self.documents):
            # μ •κ·œν™”λœ 점수 계산
            bm25_score = bm25_scores[i] / max_bm25 if max_bm25 > 0 else 0
            vector_score = None
            
            # ν•΄λ‹Ή λ¬Έμ„œμ˜ 벑터 점수 μ°ΎκΈ°
            for vec_doc, vec_score in vector_docs_and_scores:
                if vec_doc.page_content == doc.page_content:
                    vector_score = (1 - (vec_score / max_vector)) if max_vector > 0 else 0
                    break
            
            if vector_score is not None:
                # μ΅œμ’… 점수 계산
                final_score = (self.bm25_weight * bm25_score) + (self.vector_weight * vector_score)
                
                product_key = f"{doc.metadata['company_name']}-{doc.metadata['product_name']}"
                if product_key not in seen_products:
                    results.append({
                        'company_name': doc.metadata['company_name'],
                        'category': doc.metadata['category'],
                        'company_info': doc.metadata['company_info'],
                        'product_name': doc.metadata['product_name'],
                        'description': doc.metadata['description'],
                        'bm25_score': round(bm25_score, 3),
                        'vector_score': round(vector_score, 3),
                        'final_score': round(final_score, 3)
                    })
                    seen_products.add(product_key)
        
        # μ΅œμ’… 점수둜 μ •λ ¬
        results.sort(key=lambda x: x['final_score'], reverse=True)
        return results[:top_k]

def create_gradio_interface():
    """Gradio μΈν„°νŽ˜μ΄μŠ€ 생성"""
    # 검색 μ‹œμŠ€ν…œ μ΄ˆκΈ°ν™” 및 μƒ˜ν”Œ 데이터 λ‘œλ“œ
    search_system = ProductSearchSystem()
    search_system.load_sample_data()
    
    def search_products(query: str, 
                       top_k: int, 
                       bm25_weight: float) -> tuple:
        """검색 μ‹€ν–‰ 및 κ²°κ³Ό ν¬λ§€νŒ…"""
        # κ°€μ€‘μΉ˜ μ—…λ°μ΄νŠΈ
        search_system.bm25_weight = bm25_weight
        search_system.vector_weight = 1 - bm25_weight
        
        # 검색 μ‹€ν–‰
        results = search_system.search(query, top_k=top_k)
        
        # κ²°κ³Όλ₯Ό ν‘œ ν˜•μ‹μœΌλ‘œ λ³€ν™˜
        if results:
            # ν‘œμ‹œν•  μ—΄ μˆœμ„œ 지정
            columns_order = ['company_name', 'category', 'company_info', 'product_name', 'bm25_score', 'vector_score', 'final_score', 'description']
            df_results = pd.DataFrame(results)[columns_order]
            
            # μ—΄ 이름 ν•œκΈ€ν™”
            df_results.columns = ['νšŒμ‚¬λͺ…', 'μΉ΄ν…Œκ³ λ¦¬', 'νšŒμ‚¬ μ„€λͺ…', 'μ œν’ˆλͺ…', 'ν‚€μ›Œλ“œ 점수', '벑터 점수', 'μ΅œμ’… 점수', 'μ„€λͺ…']
            
            html_table = df_results.to_html(
                classes=['table', 'table-striped'], 
                escape=False, 
                index=False,
                float_format=lambda x: '{:.3f}'.format(x)  # μ†Œμˆ˜μ  3μžλ¦¬κΉŒμ§€ ν‘œμ‹œ
            )
        else:
            html_table = "<p>검색 κ²°κ³Όκ°€ μ—†μŠ΅λ‹ˆλ‹€.</p>"
        
        # 상세 κ²°κ³Ό ν…μŠ€νŠΈ 생성
        detailed_results = []
        for i, result in enumerate(results, 1):
            detailed_results.append(f"""
            === 검색결과 #{i} ===
            νšŒμ‚¬λͺ…: {result['company_name']}
            μΉ΄ν…Œκ³ λ¦¬: {result['category']}
            νšŒμ‚¬ μ„€λͺ…: {result['company_info']}
            μ œν’ˆλͺ…: {result['product_name']}
            ν‚€μ›Œλ“œ 점수: {result['bm25_score']:.3f}
            벑터 점수: {result['vector_score']:.3f}
            μ΅œμ’… 점수: {result['final_score']:.3f}
            μ„€λͺ…: {result['description']}
            """)
        
        detailed_text = "\n".join(detailed_results) if detailed_results else "검색 κ²°κ³Όκ°€ μ—†μŠ΅λ‹ˆλ‹€."
        
        return html_table, detailed_text
    
    # Gradio μΈν„°νŽ˜μ΄μŠ€ μ •μ˜
    with gr.Blocks(css="footer {visibility: hidden}") as demo:
        gr.Markdown("""
        # πŸ” μ½”μ—‘μŠ€ λΆ€μŠ€ μΆ”μ²œ μ‹œμŠ€ν…œ
        ν•˜μ΄λΈŒλ¦¬λ“œ 방식을 μ΄μš©ν•œ κΈ°μ—… 및 μ œν’ˆ 검색/μΆ”μ²œ μ‹œμŠ€ν…œμž…λ‹ˆλ‹€.
        """)
        
        with gr.Row():
            with gr.Column(scale=4):
                query_input = gr.Textbox(
                    label="검색어λ₯Ό μž…λ ₯ν•˜μ„Έμš”",
                    placeholder="예: AI 기술 νšŒμ‚¬, μ„Όμ„œ, μžλ™ν™” λ“±",
                )
            with gr.Column(scale=1):
                top_k = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=3,
                    step=1,
                    label="검색 κ²°κ³Ό 수",
                )
        
        with gr.Row():
            bm25_weight = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=0.3,
                step=0.1,
                label="ν‚€μ›Œλ“œ 검색 κ°€μ€‘μΉ˜",
            )
        
        with gr.Row():
            search_button = gr.Button("검색", variant="primary")
        
        with gr.Row():
            with gr.Column():
                results_table = gr.HTML(label="검색 κ²°κ³Ό ν…Œμ΄λΈ”")
            with gr.Column():
                results_text = gr.Textbox(
                    label="상세 κ²°κ³Ό",
                    show_label=True,
                    interactive=False,
                    lines=10
                )
        
        # 이벀트 ν•Έλ“€λŸ¬ μ—°κ²°
        search_button.click(
            fn=search_products,
            inputs=[query_input, top_k, bm25_weight],
            outputs=[results_table, results_text],
        )
            
        gr.Markdown("""
        ### μ‚¬μš© 방법
        1. 검색어 μž…λ ₯: 찾고자 ν•˜λŠ” κΈ°μ—…, μ œν’ˆ, 기술 λ“±μ˜ ν‚€μ›Œλ“œλ₯Ό μž…λ ₯ν•˜μ„Έμš”
        2. 검색 κ²°κ³Ό 수 μ‘°μ •: μ›ν•˜λŠ” κ²°κ³Ό 수λ₯Ό μ„ νƒν•˜μ„Έμš”
        3. κ°€μ€‘μΉ˜ μ‘°μ •: ν‚€μ›Œλ“œ 맀칭과 의미적 μœ μ‚¬λ„ κ°„μ˜ κ°€μ€‘μΉ˜λ₯Ό μ‘°μ ˆν•˜μ„Έμš”

        ### 점수 μ„€λͺ…
        - ν‚€μ›Œλ“œ 점수: Kiwi ν† ν¬λ‚˜μ΄μ €λ₯Ό μ‚¬μš©ν•œ ν‚€μ›Œλ“œ 기반 맀칭 점수 (0~1)
        - 벑터 점수: 의미적 μœ μ‚¬λ„ 점수 (0~1)
        - μ΅œμ’… 점수: ν‚€μ›Œλ“œ μ μˆ˜μ™€ 벑터 점수의 가쀑 평균
        """)
    
    return demo

def main():
    demo = create_gradio_interface()
    demo.launch(share=True)

if __name__ == "__main__":
    main()




# TODO
# OCR λ”₯λŸ¬λ‹ vs OCR 처리
# ν† ν¬λ‚˜μ΄μ € 처리 κ²°κ³Ό ν…ŒμŠ€νŠΈ
# ν’ˆμ‚¬ νƒœκΉ… κ²°κ³Ό 확인