Spaces:
Sleeping
Sleeping
harikrishnad1997
commited on
Commit
•
a346046
1
Parent(s):
e5b1d42
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,68 @@
|
|
1 |
-
from operator import index
|
2 |
import streamlit as st
|
3 |
-
import plotly.express as px
|
4 |
-
import numpy as np
|
5 |
-
from lazypredict.Supervised import LazyRegressor, LazyClassifier
|
6 |
-
from sklearn.model_selection import train_test_split
|
7 |
import pandas as pd
|
8 |
-
|
9 |
-
|
10 |
-
import os
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
X, y = load_iris(return_X_y=True)
|
15 |
-
df = pd.DataFrame(X, columns=["sepal_length", "sepal_width", "petal_length", "petal_width"])
|
16 |
-
df['target'] = y
|
17 |
-
return df
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
choice = st.radio("Navigation", ["Upload", "Profiling", "Modelling", "Download"])
|
25 |
-
st.info("This project application helps you build and explore your data.")
|
26 |
|
27 |
-
|
28 |
-
st.
|
29 |
-
|
30 |
-
if file:
|
31 |
-
df = pd.read_csv(file, index_col=None)
|
32 |
-
df.to_csv('dataset.csv', index=None)
|
33 |
-
st.dataframe(df)
|
34 |
|
35 |
-
|
36 |
-
st.
|
37 |
-
# AV = AutoViz_Class()
|
38 |
-
# config = {
|
39 |
-
# 'filename': None,
|
40 |
-
# 'sep': ',',
|
41 |
-
# 'depVar': '',
|
42 |
-
# 'dfte': df,
|
43 |
-
# 'header': 0,
|
44 |
-
# 'verbose': 0,
|
45 |
-
# 'lowess': False,
|
46 |
-
# 'chart_format': 'html',
|
47 |
-
# 'max_rows_analyzed': 10000,
|
48 |
-
# 'max_cols_analyzed': 50,
|
49 |
-
# # 'save_plot_path': None,
|
50 |
-
# }
|
51 |
-
# AV.AutoViz()
|
52 |
-
# st.components.v1.html(AV.html, width=1000, height=1000, scrolling=True)
|
53 |
-
|
54 |
-
AV = AutoViz_Class()
|
55 |
-
AV.AutoViz("",dfte=df)
|
56 |
-
report_path = os.path.join(os.path.dirname(__file__), "autoviz_report.html")
|
57 |
-
try:
|
58 |
-
AV.save_html(report_path)
|
59 |
-
HtmlFile = open(report_path, 'r', encoding='utf-8')
|
60 |
-
source_code = HtmlFile.read()
|
61 |
-
st.components.v1.html(source_code, width=1000, height=1000, scrolling=True)
|
62 |
-
except:
|
63 |
-
st.write("Error occurred while generating the AutoViz report.")
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
if st.button('Run Modelling'):
|
71 |
-
X = df.drop(chosen_target, axis=1)
|
72 |
-
y = df[chosen_target]
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
model_dictionary = clf.provide_models(X_train, X_test, y_train, y_test)
|
81 |
-
else:
|
82 |
-
# Regression
|
83 |
-
reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
|
84 |
-
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
|
85 |
-
model_dictionary = reg.provide_models(X_train, X_test, y_train, y_test)
|
86 |
|
87 |
-
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
|
|
5 |
|
6 |
+
# Load the Iris dataset
|
7 |
+
iris_df = sns.load_dataset('iris')
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Sidebar for file upload and dataset selection
|
10 |
+
st.sidebar.title('Upload CSV File')
|
11 |
+
uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type=['csv'])
|
12 |
|
13 |
+
if uploaded_file is not None:
|
14 |
+
# Read the uploaded file
|
15 |
+
custom_df = pd.read_csv(uploaded_file)
|
|
|
|
|
16 |
|
17 |
+
# Display the uploaded dataset
|
18 |
+
st.write('**Uploaded Dataset:**')
|
19 |
+
st.write(custom_df.head())
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Sidebar for plot selection
|
22 |
+
plot_type = st.sidebar.selectbox('Select Plot Type', ['Histogram', 'Scatter Plot'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
if plot_type == 'Histogram':
|
25 |
+
# Sidebar for selecting column
|
26 |
+
selected_column = st.sidebar.selectbox('Select Column for Histogram', custom_df.columns)
|
27 |
|
28 |
+
# Plot histogram
|
29 |
+
plt.figure(figsize=(8, 6))
|
30 |
+
sns.histplot(custom_df[selected_column])
|
31 |
+
st.pyplot()
|
|
|
|
|
|
|
32 |
|
33 |
+
elif plot_type == 'Scatter Plot':
|
34 |
+
# Sidebar for selecting columns
|
35 |
+
x_axis = st.sidebar.selectbox('Select X-Axis Column', custom_df.columns)
|
36 |
+
y_axis = st.sidebar.selectbox('Select Y-Axis Column', custom_df.columns)
|
37 |
|
38 |
+
# Plot scatter plot
|
39 |
+
plt.figure(figsize=(8, 6))
|
40 |
+
sns.scatterplot(x=x_axis, y=y_axis, data=custom_df)
|
41 |
+
st.pyplot()
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
else:
|
44 |
+
# Display the default dataset
|
45 |
+
st.write('**Default Dataset (Iris):**')
|
46 |
+
st.write(iris_df.head())
|
47 |
|
48 |
+
# Sidebar for plot selection
|
49 |
+
plot_type = st.sidebar.selectbox('Select Plot Type', ['Histogram', 'Scatter Plot'])
|
50 |
+
|
51 |
+
if plot_type == 'Histogram':
|
52 |
+
# Sidebar for selecting column
|
53 |
+
selected_column = st.sidebar.selectbox('Select Column for Histogram', iris_df.columns)
|
54 |
+
|
55 |
+
# Plot histogram
|
56 |
+
plt.figure(figsize=(8, 6))
|
57 |
+
sns.histplot(iris_df[selected_column])
|
58 |
+
st.pyplot()
|
59 |
+
|
60 |
+
elif plot_type == 'Scatter Plot':
|
61 |
+
# Sidebar for selecting columns
|
62 |
+
x_axis = st.sidebar.selectbox('Select X-Axis Column', iris_df.columns)
|
63 |
+
y_axis = st.sidebar.selectbox('Select Y-Axis Column', iris_df.columns)
|
64 |
+
|
65 |
+
# Plot scatter plot
|
66 |
+
plt.figure(figsize=(8, 6))
|
67 |
+
sns.scatterplot(x=x_axis, y=y_axis, data=iris_df)
|
68 |
+
st.pyplot()
|