File size: 10,630 Bytes
525a6df e438efd 525a6df 9a99cab 129ce22 f809c5d 525a6df 01c40ff 525a6df 8254f87 525a6df d50a100 525a6df 6cb6d95 35d3b6b 88ac4c8 6cb6d95 88ac4c8 81983b3 88ac4c8 6cb6d95 35d3b6b 81983b3 35d3b6b 88ac4c8 81983b3 f1853ff c0facca 525a6df c0facca 8591eb2 c0facca 81983b3 c0facca 81983b3 c0facca 81983b3 c0facca 81983b3 c0facca 81983b3 c0facca 81983b3 c0facca 81983b3 c0facca b63e42a c0facca b63e42a c0facca b63e42a bcad850 b63e42a bcad850 b63e42a c0facca b63e42a c0facca b63e42a c0facca b63e42a c0facca b63e42a c0facca b63e42a 545563d b63e42a 525a6df b63e42a 525a6df 4541211 525a6df 28e2fd0 ab80c92 545563d ab80c92 8591eb2 525a6df 6d6aff3 525a6df 6d6aff3 525a6df 4541211 525a6df 51be45a 525a6df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import plotly.graph_objects as go
import os
from collections import defaultdict
import igraph as ig
# print(os.pwd())
species_to_imgpath = {'bird': './descendent_specific_topk_heatmap_withbb_ep=last_024+051'}
# this has to be there for each species
imgname_to_filepath = {} # this ignores the extension such as .png
nodename_to_protoIDs = defaultdict(list)
for species, imgpath in species_to_imgpath.items():
for foldername in os.listdir(imgpath):
if os.path.isdir(os.path.join(imgpath, foldername)):
folderpath = os.path.join(imgpath, foldername)
for filename in os.listdir(folderpath):
if filename.endswith('png') or filename.endswith('jpg'):
filepath = os.path.join(folderpath, filename)
imgname_to_filepath[filename] = filepath
nodename = filename.split('.')[0].split('-')[0]
protoID = filename.split('.')[0].split('-')[1]
nodename_to_protoIDs[nodename].append(protoID)
class Node():
def __init__(self, name):
self.name = name
self.parent = None
self.children = [] # list of type Node
def add_child(child):
self.children.append(child)
name_to_node = {}
def get_root(node):
root = node
while node:
root = node
node = node.parent
return root
def get_tree(imgpath):
for foldername in os.listdir(imgpath):
if os.path.isdir(os.path.join(imgpath, foldername)):
folderpath = os.path.join(imgpath, foldername)
node_name = foldername
child_names = [filename.split('.')[0].split('-')[0] for filename in os.listdir(folderpath)]
if node_name in name_to_node:
node = name_to_node[node_name]
else:
node = Node(node_name)
name_to_node[node_name] = node
child_nodes = []
for child_name in child_names:
if child_name in name_to_node:
child_node = name_to_node[child_name]
else:
child_node = Node(child_name)
name_to_node[child_name] = child_node
child_node.parent = node
child_nodes.append(child_node)
node.children = child_nodes
# To be finished
return get_root(node)
# def display_tree():
# # This function should create and return a Plotly figure of the tree
# # Define the nodes and edges for the graph
# nodes = ['Node 1', 'Node 2', 'Node 3', 'Node 4']
# edges = [(0, 1), (0, 2), (2, 3)] # Edges are tuples of node indices
# # Define positions for the nodes (you can use a layout algorithm for more complex graphs)
# positions = [(0, 0), (1, 2), (1, -2), (2, 0)]
# # Create traces for nodes and edges
# edge_x = []
# edge_y = []
# for edge in edges:
# x0, y0 = positions[edge[0]]
# x1, y1 = positions[edge[1]]
# edge_x.extend([x0, x1, None])
# edge_y.extend([y0, y1, None])
# edge_trace = go.Scatter(
# x=edge_x, y=edge_y,
# line=dict(width=2, color='Black'),
# hoverinfo='none',
# mode='lines')
# node_x = [pos[0] for pos in positions]
# node_y = [pos[1] for pos in positions]
# node_trace = go.Scatter(
# x=node_x, y=node_y,
# mode='markers+text',
# hoverinfo='text',
# marker=dict(showscale=False, size=10, color='Goldenrod'),
# text=nodes,
# textposition="top center"
# )
# # Define the layout of the graph
# layout = go.Layout(
# showlegend=False,
# hovermode='closest',
# margin=dict(b=0, l=0, r=0, t=0),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
# )
# # Create the figure
# fig = go.Figure(data=[edge_trace, node_trace], layout=layout)
# return fig
ROOT = None
# def display_tree():
# nodes = []
# edges = []
# positions = {}
# root = ROOT
# def traverse(node, depth=0, index=0):
# if depth >= 3:
# return
# if node not in nodes:
# nodes.append(node)
# idx = nodes.index(node)
# positions[idx] = (depth * 1, index * 1 - len(nodes) / 2) # Adjusted the multipliers for depth and index
# for child in node.children:
# if child not in nodes:
# nodes.append(child)
# child_idx = nodes.index(child)
# edges.append((idx, child_idx))
# traverse(child, depth + 1, index + len(node.children) / 2) # Recursively traverse to set positions
# traverse(root)
# edge_x = []
# edge_y = []
# for edge in edges:
# x0, y0 = positions[edge[0]]
# x1, y1 = positions[edge[1]]
# edge_x.extend([x0, x1, None])
# edge_y.extend([y0, y1, None])
# edge_trace = go.Scatter(
# x=edge_x, y=edge_y,
# line=dict(width=2, color='Black'),
# hoverinfo='none',
# mode='lines')
# node_x = [pos[0] for pos in positions.values()]
# node_y = [pos[1] for pos in positions.values()]
# node_trace = go.Scatter(
# x=node_x, y=node_y,
# mode='markers+text',
# hoverinfo='text',
# marker=dict(showscale=False, size=10, color='Goldenrod'),
# text=[node.name for node in nodes],
# textposition="top center"
# )
# layout = go.Layout(
# title="Tree Visualization",
# showlegend=False,
# hovermode='closest',
# margin=dict(b=0, l=0, r=0, t=40),
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
# )
# fig = go.Figure(data=[edge_trace, node_trace], layout=layout)
# return fig
def create_edge_list(node, edge_list=None, name_map=None):
if edge_list is None:
edge_list = []
if name_map is None:
name_map = {}
if node.name not in name_map:
name_map[node.name] = len(name_map)
for child in node.children:
if child.name not in name_map:
name_map[child.name] = len(name_map)
edge_list.append((name_map[node.name], name_map[child.name]))
create_edge_list(child, edge_list, name_map)
return edge_list, list(name_map.keys())
def display_tree():
root = ROOT
edge_list, node_names = create_edge_list(root)
# Create an igraph Graph from edge list
g = ig.Graph(edges=edge_list, directed=True)
# Use the Reingold-Tilford tree layout
layout = g.layout('rt', root=[0])
# Scale the layout to make the tree more compact
scale_factor = 0.2 # Adjust this factor as needed
layout_coords = [(coord[0] * scale_factor, coord[1] * scale_factor) for coord in layout.coords]
x_coords = [coord[0] for coord in layout_coords]
y_coords = [-coord[1] for coord in layout_coords] # invert y-axis for a top-down tree view
# Create Plotly traces for nodes and edges
edge_trace = go.Scatter(
x=[None],
y=[None],
line=dict(width=2, color='#888'),
hoverinfo='none',
mode='lines'
)
for v1, v2 in g.get_edgelist():
x0, y0 = layout_coords[v1]
x1, y1 = layout_coords[v2]
# edge_trace['x'] += [x0, x1, None]
# edge_trace['y'] += [-y0, -y1, None] # invert y-axis
edge_trace['x'] += tuple(list(edge_trace['x']) + [x0, x1, None])
edge_trace['y'] += tuple(list(edge_trace['y']) + [-y0, -y1, None]) # invert y-axis
node_trace = go.Scatter(
x=x_coords, y=y_coords,
text=node_names,
mode='markers+text',
hoverinfo='text',
textposition='top center',
marker=dict(
showscale=False,
color='Blue',
size=10,
line_width=2),
textfont=dict(
size=12, # Increase the font size as needed
color='Black'
)
)
# Create a Plotly figure
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=0),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
title="Tree Visualization"
))
return fig
def get_protoIDs(nodename):
return gr.Dropdown(choices=nodename_to_protoIDs[nodename], interactive=True)
def get_image(nodename, protoID):
imgname = '-'.join([nodename, protoID]) + '.png'
filepath = imgname_to_filepath[imgname]
return gr.Image(filepath)
with gr.Blocks() as demo:
imgpath = species_to_imgpath['bird']
print(imgpath)
ROOT = get_tree(imgpath)
print(ROOT.name)
gr.Markdown("## Interactive Tree and Image Display")
with gr.Row():
tree_output = gr.Plot(display_tree) # Connect the function directly
with gr.Row():
with gr.Column():
dropdown_1_nodename = gr.Dropdown(label="Select a node name", choices=list(nodename_to_protoIDs.keys()))
dropdown_1_protos = gr.Dropdown(label="Select a prototype ID", choices=[], allow_custom_value=True)
image_output_1 = gr.Image()
with gr.Column():
dropdown_2_nodename = gr.Dropdown(label="Select a node name", choices=list(nodename_to_protoIDs.keys()))
dropdown_2_protos = gr.Dropdown(label="Select a prototype ID", choices=[], allow_custom_value=True)
image_output_2 = gr.Image()
dropdown_1_nodename.change(get_protoIDs, dropdown_1_nodename, dropdown_1_protos)
dropdown_1_protos.change(get_image, [dropdown_1_nodename, dropdown_1_protos], image_output_1)
dropdown_2_nodename.change(get_protoIDs, dropdown_2_nodename, dropdown_2_protos)
dropdown_2_protos.change(get_image, [dropdown_2_nodename, dropdown_2_protos], image_output_2)
# Initialize with placeholder images
# image_output_1.update(display_image_based_on_dropdown_1)
# image_output_2.update(display_image_based_on_dropdown_2)
demo.launch()
|