Spaces:
Runtime error
Runtime error
import streamlit as st | |
st.sidebar.header("Transformer parameters") | |
col1, col2 = st.sidebar.columns([2, 4]) | |
bs = st.sidebar.number_input('Batch size', value=10) | |
h = st.sidebar.number_input('Num heads',value=16) | |
d = st.sidebar.number_input('Dimension', value=768) | |
l = st.sidebar.number_input('Num layers', value=24) | |
n_start = st.sidebar.number_input('Start seq', value=1) | |
n = st.sidebar.number_input('End seq', value=1024) | |
st.sidebar.header("GPU parameters") | |
GPU = st.sidebar.selectbox('GPU', ('A100', 'V100')) | |
if GPU == 'A100': | |
# A100 specs | |
TFLOPS = 312e12 | |
GB_S = 1935e9 | |
elif GPU == 'V100': | |
TFLOPS = 112e12 | |
GB_S = 900e9 | |
else: | |
raise ValueError('Unknown GPU') | |
# in ms | |
THREAD_OVERHEAD = st.sidebar.number_input('Thread overhead (in ms)', format="%.3f", value=0.005) | |
GPU_EFFICIENCY = st.sidebar.number_input('GPU efficiency', format="%.3f", value=0.5) | |
TFLOPS = GPU_EFFICIENCY*TFLOPS | |
# in ms | |
def calc_exec_time(comp_flop, mem_bytes, include_overhead=True): | |
exec_time = comp_flop/TFLOPS + mem_bytes/GB_S | |
exec_time *= 1000 | |
if include_overhead: | |
exec_time = max(exec_time, THREAD_OVERHEAD) | |
return exec_time | |
def qkv_mha_exec(bs, h, n, d): | |
flop = 2*bs*1*d*3*d | |
nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def qkv_mqa_exec(bs, h, n, d): | |
flop = 2*bs*1*d*(1+2/h)*d | |
nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att1_mha_exec(bs, h, n, d): | |
flop = 2*bs*h*(d/h)*n | |
nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att1_mqa_exec(bs, h, n, d): | |
flop = 2*bs*h*(d/h)*n | |
nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att2_mha_exec(bs, h, n, d): | |
flop = 2*bs*h*n*(d/h) | |
nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h) | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att2_mqa_exec(bs, h, n, d): | |
flop = 2*bs*h*n*(d/h) | |
nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h) | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def out_exec(bs, h, n, d): | |
flop = 2*bs*1*d*d | |
nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def softmax_exec(bs, h, n, d): | |
flop = 0 | |
nbytes = 2*bs*h*n + 2*bs*h*n | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def ln_exec(bs, h, n, d): | |
nbytes = 2*bs*1*d + 2*bs*1*d | |
flop = 0 | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def mlp_exec(bs, h, n, d): | |
flop = 2*bs*1*d*4*d | |
nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def print_kernel_execution(flop, nbytes): | |
c1, c2 = st.columns([2, 3]) | |
exec_time = calc_exec_time(flop, nbytes, include_overhead=False) | |
flop = round(flop/1e9, 2) | |
nbytes = round(nbytes/1e6, 2) | |
c1.write("GFLOP:") | |
c2.write(str(flop)) | |
c1.write("MB: ") | |
c2.write(str(nbytes)) | |
c1.write("Time (ms):") | |
c2.write(str(exec_time)) | |
c1.write("Overhead (ms):") | |
c2.write(str(THREAD_OVERHEAD)) | |
st.title("Inference time MHA vs MQA") | |
st.write("This space approximates the inference time for Multi-Query Attention and Multi-Head Attention model. You can change the hyperparameters in sidebar.") | |
mqa_total_time = 0. | |
mha_total_time = 0. | |
for i in range(n_start, n): | |
shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] + 2*ln_exec(bs, h, i, d)[2] \ | |
+ 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)[2] | |
mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2] | |
mha_total_time += l*mha_time | |
mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2] | |
mqa_total_time += l*mqa_time | |
c1, c2 = st.columns([2, 4]) | |
c1.write("Multi-Head Attention:") | |
c2.write(str(round(mha_total_time, 2))) | |
c1.write("Multi-Query Attention:") | |
c2.write(str(round(mqa_total_time, 2))) | |
c1.write("Speed-up MQA over MHA: ") | |
c2.write(str(round(mha_total_time/mqa_total_time,2))) | |
st.subheader("Memory consumption") | |
st.caption("Multi-Head Attention") | |
c1, c2 = st.columns([2, 4]) | |
num_params = 12*l*d*d | |
c1.write("Num Parameters (in B)") | |
c2.write(str(round(num_params/1e9, 3))) | |
c1.write("Stored Parameters (GB)") | |
c2.write(str(round(2*num_params/1e9, 3))) | |
c1.write("Cached keys and values (GB)") | |
acts = round(2*bs*l*(d/h)*h*2*n/1e9, 2) | |
c2.write(str(acts)) | |
st.caption("Multi-Query Attention") | |
c1, c2 = st.columns([2, 4]) | |
num_params = (10+2/h)*l*d*d | |
c1.write("Num Parameters (in B)") | |
c2.write(str(round(num_params/1e9, 3))) | |
c1.write("Stored Parameters (GB)") | |
c2.write(str(round(2*num_params/1e9, 3))) | |
c1.write("Cached keys and values (GB)") | |
acts = round(2*bs*l*(d/h)*2*n/1e9, 2) | |
c2.write(str(acts)) | |
st.subheader("Approximations") | |
st.markdown("[We use the [following crude approximation](https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf) to estimate the execution time for each matrix multiplication.") | |
st.latex("C = A \cdot B") | |
st.latex("A \in \mathbb{R}^{MxK}, B \in R^{KxN}, C \in \mathbb{R}^{MxN}") | |
st.markdown(''' | |
To execute this operation on the GPU, we need to | |
1. Read A, B from memory | |
2. Perform math operations | |
3. Write C to memory | |
''') | |
st.latex(''' | |
For float16 operations (2 bytes), we can estimate the memory access time of A as follows: | |
T_mem(A) = 2*M*K / BW_mem | |
where BW_mem is the memory bandwidth of the GPU (e.g. 1935 GB/s for A100) | |
''') | |
st.latex(''' | |
For float16 operations (2 bytes), we can estimate the memory access time of A as follows: | |
T_mem(A) = 2*M*K / BW_mem | |
where BW_mem is the memory bandwidth of the GPU (e.g. 1935 GB/s for A100) | |
''') | |
breakdown = st.checkbox("Show breakdown per operation") | |
if breakdown: | |
st.header('Attention layer') | |
st.subheader('QKV projection') | |
st.caption("Multi-Head Attention") | |
flop, nbytes, exec_time = qkv_mha_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.caption("Multi-Query Attention") | |
flop, nbytes, exec_time = qkv_mqa_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.subheader('QK gemm') | |
st.write("Showing calculation for the maximum sequence length (n)") | |
st.caption("Multi-Head Attention") | |
flop, nbytes, exec_time = att1_mha_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.caption("Multi-Query Attention") | |
flop, nbytes, exec_time = att1_mqa_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.subheader('Attention-value gemm') | |
st.write("Showing calculation for the maximum sequence length (n)") | |
st.caption("Multi-Head Attention") | |
flop, nbytes, exec_time = att2_mha_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.caption("Multi-Query Attention") | |
flop, nbytes, exec_time = att2_mqa_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.subheader('Output projection') | |
flop, nbytes, exec_time = out_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.subheader('Element-wise ops') | |
st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ") | |
st.caption("Softmax") | |
flop, nbytes, exec_time = softmax_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.caption("Layer norm/residual connection") | |
flop, nbytes, exec_time = ln_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.header('MLP layer') | |
st.subheader('First and Second Linear Layer') | |
flop, nbytes, exec_time = mlp_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) | |
st.subheader('Element-wise ops') | |
st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ") | |
flop, nbytes, exec_time = ln_exec(bs, h, n, d) | |
print_kernel_execution(flop, nbytes) |