Spaces:
Runtime error
Runtime error
import streamlit as st | |
# A100 specs | |
TFLOPS = 312e12 | |
GB_S = 1935e9 | |
# in ms | |
THREAD_OVERHEAD = 0.005 | |
# in ms | |
def calc_exec_time(comp_flop, mem_bytes): | |
exec_time = comp_flop/TFLOPS + mem_bytes/GB_S | |
return max(exec_time*1000, THREAD_OVERHEAD) | |
def qkv_mha_exec(bs, h, n, d): | |
flop = 2*bs*1*d*3*d | |
nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def qkv_mqa_exec(bs, h, n, d): | |
flop = 2*bs*1*d*(1+2/h)*d | |
nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att1_mha_exec(bs, h, n, d): | |
flop = 2*bs*h*(d/h)*n | |
nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att1_mqa_exec(bs, h, n, d): | |
flop = 2*bs*h*(d/h)*n | |
nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att2_mha_exec(bs, h, n, d): | |
flop = 2*bs*h*n*(d/h) | |
nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h) | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def att2_mqa_exec(bs, h, n, d): | |
flop = 2*bs*h*n*(d/h) | |
nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h) | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def out_exec(bs, h, n, d): | |
flop = 2*bs*1*d*d | |
nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def softmax_exec(bs, h, n, d): | |
flop = 0 | |
nbytes = 2*bs*h*n + 2*bs*h*n | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def ln_exec(bs, h, n, d): | |
nbytes = 2*bs*1*d + 2*bs*1*d | |
flop = 0 | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def mlp_exec(bs, h, n, d): | |
flop = 2*bs*1*d*4*d | |
nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d | |
exec_time = calc_exec_time(flop, nbytes) | |
return flop, nbytes, exec_time | |
def print_kernel_execution(c1, c2, comp_flop, mem_bytes): | |
exec_time = calc_exec_time(comp_flop, mem_bytes) | |
comp_flop = round(comp_flop/1e9, 2) | |
mem_bytes = round(mem_bytes/1e6, 2) | |
c1.write("GFLOP:") | |
c2.write(str(comp_flop)) | |
c1.write("MB: ") | |
c2.write(str(mem_bytes)) | |
c1.write("Time (ms):") | |
c2.write(str(exec_time)) | |
return exec_time | |
st.sidebar.header("Transformer parameters") | |
col1, col2 = st.sidebar.columns([2, 4]) | |
bs = st.sidebar.number_input('Batch size', value=10) | |
h = st.sidebar.number_input('Num heads',value=16) | |
d = st.sidebar.number_input('Dimension', value=768) | |
l = st.sidebar.number_input('Num layers', value=24) | |
n_start = st.sidebar.number_input('Start seq', value=1) | |
n = st.sidebar.number_input('End seq', value=1024) | |
st.sidebar.header("GPU parameters") | |
st.header("Execution time (ms)") | |
mqa_total_time = 0. | |
mha_total_time = 0. | |
for i in range(n_start, n): | |
shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] + 2*ln_exec(bs, h, i, d)[2] \ | |
+ 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)[2] | |
mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2] | |
mha_total_time += l*mha_time | |
mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2] | |
mqa_total_time += l*mqa_time | |
st.write("Multi-Head Attention: " + str(mha_total_time)) | |
st.write("Multi-Query Attention: " + str(mqa_total_time)) | |
st.header('Attention layer') | |
st.subheader('QKV projection') | |
st.caption("Multi-Head Attention") | |
mha_flop = 2*bs*1*d*3*d | |
mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d | |
c1, c2 = st.columns([2, 3]) | |
qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) | |
st.caption("Multi-Query Attention") | |
mqa_flop = 2*bs*1*d*(1+2/h)*d | |
mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d | |
c1, c2 = st.columns([2, 3]) | |
qkv_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) | |
st.subheader('QK gemm') | |
st.write("Note that calculation depends on sequence length (n)") | |
st.caption("Multi-Head Attention") | |
mha_flop = 2*bs*h*(d/h)*n | |
mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n | |
c1, c2 = st.columns([2, 3]) | |
att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) | |
st.caption("Multi-Query Attention") | |
mqa_flop = 2*bs*h*(d/h)*n | |
mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n | |
c1, c2 = st.columns([2, 3]) | |
att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) | |
st.subheader('Attention-value gemm') | |
st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.") | |
st.caption("Multi-Head Attention") | |
mha_flop = 2*bs*h*n*(d/h) | |
mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h) | |
c1, c2 = st.columns([2, 3]) | |
att2_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) | |
st.caption("Multi-Query Attention") | |
mqa_flop = 2*bs*h*n*(d/h) | |
mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h) | |
c1, c2 = st.columns([2, 3]) | |
att2_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) | |
st.subheader('Output projection') | |
out_flop = 2*bs*1*d*d | |
out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d | |
c1, c2 = st.columns([2, 3]) | |
out_time = print_kernel_execution(c1, c2, out_flop, out_bytes) | |
st.subheader('Element-wise ops') | |
st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ") | |
st.caption("Softmax") | |
softmax_bytes = 2*bs*h*n + 2*bs*h*n | |
c1, c2 = st.columns([2, 3]) | |
softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes) | |
st.caption("Layer norm/residual connection") | |
ln_bytes = 2*bs*1*d | |
ln_flop = 0 | |
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes) | |
st.header('MLP') | |
st.subheader('First Linear') | |
mlp1_flop = 2*bs*1*d*4*d | |
mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d | |
c1, c2 = st.columns([2, 3]) | |
mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes) | |
st.subheader('Second Linear') | |
mlp2_flop = 2*bs*1*d*4*d | |
mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d | |
c1, c2 = st.columns([2, 3]) | |
mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes) | |
st.subheader('Element-wise ops') | |
st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ") | |
ln_bytes = 2*bs*1*d | |
ln_flop = 0 | |
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes) | |
st.header("Adding it all up") | |
shared_time = out_time + softmax_time + 2*ln_time + mlp1_time + mlp2_time + 3*ln_time | |
mha_total_time = qkv_mha_time + att1_mha_time + att2_mha_time + shared_time | |
mqa_total_time = qkv_mqa_time + att1_mqa_time + att2_mqa_time + shared_time | |
st.write("MHA exec time (ms): " + str(mha_total_time)) | |
st.write("MQA exec time (ms): " + str(mqa_total_time)) |