harmdevries's picture
Update app.py
b31a1d5
raw
history blame
6.72 kB
import streamlit as st
# A100 specs
TFLOPS = 312e12
GB_S = 1935e9
# in ms
THREAD_OVERHEAD = 0.005
# in ms
def calc_exec_time(comp_flop, mem_bytes):
exec_time = comp_flop/TFLOPS + mem_bytes/GB_S
return max(exec_time*1000, THREAD_OVERHEAD)
def qkv_mha_exec(bs, h, n, d):
flop = 2*bs*1*d*3*d
nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def qkv_mqa_exec(bs, h, n, d):
flop = 2*bs*1*d*(1+2/h)*d
nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def att1_mha_exec(bs, h, n, d):
flop = 2*bs*h*(d/h)*n
nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def att1_mqa_exec(bs, h, n, d):
flop = 2*bs*h*(d/h)*n
nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def att2_mha_exec(bs, h, n, d):
flop = 2*bs*h*n*(d/h)
nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def att2_mqa_exec(bs, h, n, d):
flop = 2*bs*h*n*(d/h)
nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def out_exec(bs, h, n, d):
flop = 2*bs*1*d*d
nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def softmax_exec(bs, h, n, d):
flop = 0
nbytes = 2*bs*h*n + 2*bs*h*n
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def ln_exec(bs, h, n, d):
nbytes = 2*bs*1*d + 2*bs*1*d
flop = 0
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def mlp_exec(bs, h, n, d):
flop = 2*bs*1*d*4*d
nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
exec_time = calc_exec_time(flop, nbytes)
return flop, nbytes, exec_time
def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
exec_time = calc_exec_time(comp_flop, mem_bytes)
comp_flop = round(comp_flop/1e9, 2)
mem_bytes = round(mem_bytes/1e6, 2)
c1.write("GFLOP:")
c2.write(str(comp_flop))
c1.write("MB: ")
c2.write(str(mem_bytes))
c1.write("Time (ms):")
c2.write(str(exec_time))
return exec_time
st.sidebar.header("Transformer parameters")
col1, col2 = st.sidebar.columns([2, 4])
bs = st.sidebar.number_input('Batch size', value=10)
h = st.sidebar.number_input('Num heads',value=16)
d = st.sidebar.number_input('Dimension', value=768)
l = st.sidebar.number_input('Num layers', value=24)
n_start = st.sidebar.number_input('Start seq', value=1)
n = st.sidebar.number_input('End seq', value=1024)
st.sidebar.header("GPU parameters")
st.header("Execution time (ms)")
mqa_total_time = 0.
mha_total_time = 0.
for i in range(n_start, n):
shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] + 2*ln_exec(bs, h, i, d)[2] \
+ 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)[2]
mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2]
mha_total_time += l*mha_time
mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2]
mqa_total_time += l*mqa_time
st.write("Multi-Head Attention: " + str(mha_total_time))
st.write("Multi-Query Attention: " + str(mqa_total_time))
st.header('Attention layer')
st.subheader('QKV projection')
st.caption("Multi-Head Attention")
mha_flop = 2*bs*1*d*3*d
mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
c1, c2 = st.columns([2, 3])
qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
st.caption("Multi-Query Attention")
mqa_flop = 2*bs*1*d*(1+2/h)*d
mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
c1, c2 = st.columns([2, 3])
qkv_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
st.subheader('QK gemm')
st.write("Note that calculation depends on sequence length (n)")
st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*(d/h)*n
mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*(d/h)*n
mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
st.subheader('Attention-value gemm')
st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.")
st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*n*(d/h)
mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att2_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*n*(d/h)
mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att2_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
st.subheader('Output projection')
out_flop = 2*bs*1*d*d
out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
c1, c2 = st.columns([2, 3])
out_time = print_kernel_execution(c1, c2, out_flop, out_bytes)
st.subheader('Element-wise ops')
st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ")
st.caption("Softmax")
softmax_bytes = 2*bs*h*n + 2*bs*h*n
c1, c2 = st.columns([2, 3])
softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes)
st.caption("Layer norm/residual connection")
ln_bytes = 2*bs*1*d
ln_flop = 0
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)
st.header('MLP')
st.subheader('First Linear')
mlp1_flop = 2*bs*1*d*4*d
mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes)
st.subheader('Second Linear')
mlp2_flop = 2*bs*1*d*4*d
mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes)
st.subheader('Element-wise ops')
st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ")
ln_bytes = 2*bs*1*d
ln_flop = 0
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)
st.header("Adding it all up")
shared_time = out_time + softmax_time + 2*ln_time + mlp1_time + mlp2_time + 3*ln_time
mha_total_time = qkv_mha_time + att1_mha_time + att2_mha_time + shared_time
mqa_total_time = qkv_mqa_time + att1_mqa_time + att2_mqa_time + shared_time
st.write("MHA exec time (ms): " + str(mha_total_time))
st.write("MQA exec time (ms): " + str(mqa_total_time))