Spaces:
Runtime error
Runtime error
Commit
·
a21c8ab
1
Parent(s):
9ff92c0
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,74 @@
|
|
1 |
import streamlit as st
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def calc_exec_time(comp_flop, mem_bytes):
|
4 |
return (comp_flop/TFLOPS + mem_bytes/GB_S)*1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
|
7 |
arith_int = comp_flop/mem_bytes
|
@@ -14,15 +81,12 @@ def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
|
|
14 |
c2.write(str(comp_flop))
|
15 |
c1.write("MB: ")
|
16 |
c2.write(str(mem_bytes))
|
17 |
-
c1.write("Arithm. intensity:")
|
18 |
-
c2.write(str(arith_int))
|
19 |
c1.write("Time (ms):")
|
20 |
c2.write(str(exec_time))
|
21 |
|
22 |
return exec_time
|
23 |
|
24 |
-
|
25 |
-
GB_S = 1935e9
|
26 |
|
27 |
st.sidebar.header("Transformer parameters")
|
28 |
col1, col2 = st.sidebar.columns([2, 4])
|
@@ -31,11 +95,29 @@ bs = st.sidebar.number_input('Batch size', value=10)
|
|
31 |
h = st.sidebar.number_input('Num heads',value=16)
|
32 |
d = st.sidebar.number_input('Dimension', value=768)
|
33 |
l = st.sidebar.number_input('Num layers', value=24)
|
|
|
34 |
n_start = st.sidebar.number_input('Start seq', value=1)
|
35 |
n = st.sidebar.number_input('End seq', value=1024)
|
36 |
|
37 |
st.sidebar.header("GPU parameters")
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
st.header('Attention layer')
|
40 |
|
41 |
st.subheader('QKV projection')
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
+
# A100 specs
|
4 |
+
TFLOPS = 312e12
|
5 |
+
GB_S = 1935e9
|
6 |
+
|
7 |
+
# in ms
|
8 |
+
THREAD_OVERHEAD = 0.005
|
9 |
+
|
10 |
def calc_exec_time(comp_flop, mem_bytes):
|
11 |
return (comp_flop/TFLOPS + mem_bytes/GB_S)*1000
|
12 |
+
|
13 |
+
def qkv_mha_exec(bs, h, n, d):
|
14 |
+
flop = 2*bs*1*d*3*d
|
15 |
+
nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
|
16 |
+
exec_time = calc_exec_time(flop, nbytes)
|
17 |
+
return flop, nbytes, exec_time
|
18 |
+
|
19 |
+
def qkv_mqa_exec(bs, h, n, d):
|
20 |
+
flop = 2*bs*1*d*(1+2/h)*d
|
21 |
+
nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
|
22 |
+
exec_time = calc_exec_time(flop, nbytes)
|
23 |
+
return flop, nbytes, exec_time
|
24 |
+
|
25 |
+
def att1_mha_exec(bs, h, n, d):
|
26 |
+
flop = 2*bs*h*(d/h)*n
|
27 |
+
nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
|
28 |
+
exec_time = calc_exec_time(flop, nbytes)
|
29 |
+
return flop, nbytes, exec_time
|
30 |
+
|
31 |
+
def att1_mqa_exec(bs, h, n, d):
|
32 |
+
flop = 2*bs*h*(d/h)*n
|
33 |
+
nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
|
34 |
+
exec_time = calc_exec_time(flop, nbytes)
|
35 |
+
return flop, nbytes, exec_time
|
36 |
+
|
37 |
+
def att2_mha_exec(bs, h, n, d):
|
38 |
+
flop = 2*bs*h*n*(d/h)
|
39 |
+
nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
|
40 |
+
exec_time = calc_exec_time(flop, nbytes)
|
41 |
+
return flop, nbytes, exec_time
|
42 |
+
|
43 |
+
def att2_mqa_exec(bs, h, n, d):
|
44 |
+
flop = 2*bs*h*n*(d/h)
|
45 |
+
nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
|
46 |
+
exec_time = calc_exec_time(flop, nbytes)
|
47 |
+
return flop, nbytes, exec_time
|
48 |
+
|
49 |
+
def out_exec(bs, h, n, d):
|
50 |
+
flop = 2*bs*1*d*d
|
51 |
+
nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
|
52 |
+
exec_time = calc_exec_time(flop, nbytes)
|
53 |
+
return flop, nbytes, exec_time
|
54 |
+
|
55 |
+
def softmax_exec(bs, h, n, d):
|
56 |
+
flop = 0
|
57 |
+
nbytes = 2*bs*h*n + 2*bs*h*n
|
58 |
+
exec_time = calc_exec_time(flop, nbytes)
|
59 |
+
return flop, nbytes, exec_time
|
60 |
+
|
61 |
+
def ln_exec(bs, h, n, d):
|
62 |
+
nbytes = 2*bs*1*d + 2*bs*1*d
|
63 |
+
flop = 0
|
64 |
+
exec_time = calc_exec_time(flop, nbytes)
|
65 |
+
return flop, nbytes, exec_time
|
66 |
+
|
67 |
+
def mlp_exec(bs, h, n, d):
|
68 |
+
flop = 2*bs*1*d*4*d
|
69 |
+
nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
|
70 |
+
exec_time = calc_exec_time(flop, nbytes)
|
71 |
+
return flop, nbytes, exec_time
|
72 |
|
73 |
def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
|
74 |
arith_int = comp_flop/mem_bytes
|
|
|
81 |
c2.write(str(comp_flop))
|
82 |
c1.write("MB: ")
|
83 |
c2.write(str(mem_bytes))
|
|
|
|
|
84 |
c1.write("Time (ms):")
|
85 |
c2.write(str(exec_time))
|
86 |
|
87 |
return exec_time
|
88 |
|
89 |
+
|
|
|
90 |
|
91 |
st.sidebar.header("Transformer parameters")
|
92 |
col1, col2 = st.sidebar.columns([2, 4])
|
|
|
95 |
h = st.sidebar.number_input('Num heads',value=16)
|
96 |
d = st.sidebar.number_input('Dimension', value=768)
|
97 |
l = st.sidebar.number_input('Num layers', value=24)
|
98 |
+
|
99 |
n_start = st.sidebar.number_input('Start seq', value=1)
|
100 |
n = st.sidebar.number_input('End seq', value=1024)
|
101 |
|
102 |
st.sidebar.header("GPU parameters")
|
103 |
|
104 |
+
|
105 |
+
st.header("Total execution time")
|
106 |
+
|
107 |
+
mqa_total_time = 0.
|
108 |
+
mha_total_time = 0.
|
109 |
+
|
110 |
+
for i in range(n_start, n):
|
111 |
+
shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] \
|
112 |
+
2*ln_exec(bs, h, i, d)[2] + 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)
|
113 |
+
mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2]
|
114 |
+
mha_total_time += l*mha_time
|
115 |
+
mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2]
|
116 |
+
mqa_total_time += l*mqa_time
|
117 |
+
|
118 |
+
st.write("MHA exec time: " + str(mha_total_time))
|
119 |
+
st.write("MQA exec time: " + str(mqa_total_time))
|
120 |
+
|
121 |
st.header('Attention layer')
|
122 |
|
123 |
st.subheader('QKV projection')
|