import streamlit as st def number_field(label, **args): c1, c2 = st.columns([2, 4]) c1.write(label) return c2.number_input('', **args) st.header("Transformer parameters") col1, col2 = st.columns([2, 4]) bs = number_field('Batch size', value=10) h = number_field('Num heads', value=16) d = number_field('Dimension', value=768) n = number_field('Seq length', value=1024) st.header('Query, Key, Value projection') mha_flop = 2*bs*n*d*3*d mha_bytes = 2*bs*n*d + 2*3*d*d + 2*bs*n*3*d st.subheader("Multi-query Attention") c1, c2 = st.columns([2, 3]) c1.write("FLOP:") c2.write(str(mha_flop)) c1.write("Bytes: ") c2.write(str(mha_bytes)) c1.write("Arithm. intensity:") c2.write(str(mha_flop/mha_bytes)) mqa_flop = 2*bs*n*d*(1+2/h)*d mqa_bytes = 2*bs*n*d + 2*(2/h)*d*d + 2*bs*n*(2/h)*d st.subheader("Multi-query Attention") c1, c2 = st.columns([2, 3]) c1.write("FLOP:") c2.write(str(mqa_flop)) c1.write("Bytes: ") c2.write(str(mqa_bytes)) c1.write("Arithm. intensity:") c2.write(str(mqa_flop/mqa_bytes)) st.header('Attention')