import streamlit as st def number_field(label, **kwargs): c1, c2 = st.columns([2, 4]) c1.write(label) return c2.number_input('', **kwargs) def calc_exec_time(comp_flop, mem_bytes): return (comp_flop/TFLOPS + mem_bytes/GB_S)*1000 def print_kernel_execution(c1, c2, comp_flop, mem_bytes): arith_int = comp_flop/mem_bytes exec_time = calc_exec_time(comp_flop, mem_bytes) comp_flop = round(comp_flop/1e9, 2) mem_bytes = round(mem_bytes/1e6, 2) c1.write("GFLOP:") c2.write(str(comp_flop)) c1.write("MB: ") c2.write(str(mem_bytes)) c1.write("Arithm. intensity:") c2.write(str(arith_int)) c1.write("Time (ms):") c2.write(str(exec_time)) return exec_time TFLOPS = 312e12 GB_S = 1935e9 st.header("Transformer parameters") col1, col2 = st.columns([2, 4]) bs = number_field('Batch size', value=10) h = number_field('Num heads', value=16) d = number_field('Dimension', value=768) n_start = number_field('Start seq', value=1) n = number_field('End seq', value=1024) l = number_field('Num layers', value=24) st.header('Attention layer') st.subheader('QKV projection') st.caption("Multi-Head Attention") mha_flop = 2*bs*1*d*3*d mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d c1, c2 = st.columns([2, 3]) qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) st.caption("Multi-Query Attention") mqa_flop = 2*bs*1*d*(1+2/h)*d mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d c1, c2 = st.columns([2, 3]) qkv_mha_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) st.subheader('QK gemm') st.write("Note that calculation depends on sequence length (n)") st.caption("Multi-Head Attention") mha_flop = 2*bs*h*(d/h)*n mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n c1, c2 = st.columns([2, 3]) att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) st.caption("Multi-Query Attention") mqa_flop = 2*bs*h*(d/h)*n mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n c1, c2 = st.columns([2, 3]) att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) st.subheader('Attention-value gemm') st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.") st.caption("Multi-Head Attention") mha_flop = 2*bs*h*n*(d/h) mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h) c1, c2 = st.columns([2, 3]) att_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) st.caption("Multi-Query Attention") mqa_flop = 2*bs*h*n*(d/h) mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h) c1, c2 = st.columns([2, 3]) att_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) st.subheader('Output projection') out_flop = 2*bs*1*d*d out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d c1, c2 = st.columns([2, 3]) out_time = print_kernel_execution(c1, c2, out_flop, out_bytes) st.subheader('Element-wise ops') st.write("We also need to take into the softmax layer and layer norm") st.caption("Softmax") softmax_bytes = 2*bs*h*n + 2*bs*h*n c1, c2 = st.columns([2, 3]) softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes)) st.caption("Layer norm") st.header('MLP') st.subheader('First Linear') mlp1_flop = 2*bs*1*d*4*d mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d c1, c2 = st.columns([2, 3]) mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes) st.subheader('Second Linear') mlp2_flop = 2*bs*1*d*4*d mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d c1, c2 = st.columns([2, 3]) mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes)