import streamlit as st def number_field(label, **args): c1, c2 = st.columns([2, 4]) c1.write(label) return c2.number_input('', **args) def print_kernel_execution(c1, c2, comp_flop, mem_bytes): arith_int = comp_flop/mem_bytes exec_time = (comp_flop/TFLOPS + mem_bytes/GB_S)*1000 comp_flop = round(mha_flop/1e9, 2) mem_bytes = round(mha_bytes/1e6, 2) c1.write("GFLOP:") c2.write(str(flop)) c1.write("MB: ") c2.write(str(mha_bytes)) c1.write("Arithm. intensity:") c2.write(str(mha_int)) c1.write("Time (ms):") c2.write(str(mha_time)) return exec_time TFLOPS = 312e12 GB_S = 1935e9 st.header("Transformer parameters") col1, col2 = st.columns([2, 4]) bs = number_field('Batch size', value=10) h = number_field('Num heads', value=16) d = number_field('Dimension', value=768) n = number_field('Seq length', value=1024) st.header('Query, Key, Value projection') st.subheader("Multi-Head Attention") mha_flop = 2*bs*1*d*3*d mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d c1, c2 = st.columns([2, 3]) qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) st.subheader("Multi-Query Attention") mqa_flop = 2*bs*1*d*(1+2/h)*d mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d c1, c2 = st.columns([2, 3]) qkv_mha_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) st.header('Attention') st.subheader("Multi-Head Attention") mha_flop = 2*bs*h*(d/h)*n mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n c1, c2 = st.columns([2, 3]) att_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) st.subheader("Multi-Query Attention") mqa_flop = 2*bs*h*(d/h)*n mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n c1, c2 = st.columns([2, 3]) att_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) st.header('MLP') st.subheader('First Linear') st.subheader('Second Linear')